首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The purpose of the current study was to compare the effect of 3 different rest intervals on multiple sets of the bench press exercise performed with heavy vs. light loads. Sixteen resistance-trained men performed 2 testing sessions each week for 3 weeks. During the first testing session each week, 5 consecutive sets of the bench press were performed with 80% of 1 repetition maximum (1RM) and with a 1-, 2-, or 3-minute rest interval between sets. During the second testing session each week the same procedures were repeated with 50% of 1RM. The total repetitions completed and the sustainability of repetitions were compared between rest conditions and between loads. For each load, resting 3 minutes between sets resulted in significantly greater total repetitions vs. resting 2 minutes (p = 0.000) or 1 minute (p = 0.000) between sets. However, the sustainability of repetitions was not significantly different between loads (p = 0.849). These results can be applied to weekly bench press workouts that undulate between heavy (i.e., 80% 1RM) and light (i.e., 50% 1RM) intensities. When the training goal is maximal strength development, 3 minutes of rest should be taken between sets to avoid significant declines in repetitions. The ability to sustain repetitions while keeping the intensity constant may result in a higher training volume and consequently greater gains in muscular strength.  相似文献   

2.
The purpose of this research was to compare differences between 3 different rest intervals on the squat and bench press volume completed during a workout. Fifteen college-aged men volunteered to participate in this study (age 20.73 +/- 2.60 years; body mass 80.73 +/- 10.80 kg). All subjects performed 3 testing sessions, during which 4 sets of the squat and bench press were performed with an 8 repetition maximum (8RM) load. During each testing session, the squat and bench press were performed with a 1, 2, or 5-minute rest interval between sets. Volume was defined as the total number of repetitions completed over 4 sets for each rest condition. Statistical analysis was conducted separately for the squat and bench press. One-way repeated analyses of variance with Bonferroni post hocs demonstrated significant differences between each rest condition for both exercises tested (p < 0.05). The 5-minute rest condition resulted in the highest volume completed, followed in descending order by the 2- and 1-minute rest conditions. The ability to perform a higher volume of training with a given load may stimulate greater strength adaptations.  相似文献   

3.
The purpose of this study was to compare the effect of 3 different rest intervals on the sustainability of squat and bench press repetitions over 5 consecutive sets performed with a 15 repetition maximum (RM)-load. Fifteen college-age men with previous resistance training experience were tested weekly over a period of 3 weeks. During each testing session, 5 consecutive sets of the squat and the bench press were performed with a 30-second, 1-minute, or 2-minute rest interval between sets. For each exercise, significant declines in repetitions occurred between the first and the fifth sets (p = 0.000). For the squat, a significant difference in the ability to sustain repetitions occurred between the 30-second and 2-minute rest condition (p = 0.003). However, differences were not significant between the 30-second and 1-minute rest conditions (p = 0.986) and between the 1-minute and 2-minute rest conditions (p = 0.042). For the bench press, significant differences in the ability to sustain repetitions occurred between the 30-second and 2-minute rest conditions (p = 0.000) and between the 1-minute and 2-minute rest conditions (p = 0.000). However, differences were not significant between the 30-second and 1-minute rest conditions (p = 0.019). For each exercise, the number of repetitions completed on the first set was not sustained over subsequent sets, irrespective of the rest condition. These results suggest that when short rest intervals are used to develop muscular endurance, the intensity should be lowered over subsequent sets to sustain repetitions within the range conducive to this training goal.  相似文献   

4.
This study aimed to examine short-term resistance training effects of resting period length between sets on maximal number of repetitions and mean velocity over a moderate-intensity (60% of the maximum voluntary isometric contraction [MVIC]) set to failure on elbow-flexor muscles. The MVIC and surface electromyographic activity (sEMG) were also measured. Twenty-one untrained subjects were divided into 3 groups: short rest between sets (1 minute; SR), long rest between sets (4 minutes; LR), and nontraining control group (CG). The SR and LR performed 3 sets to failure in an arm-curl machine, 2 days per week for 5 weeks, with moderate loads (60-75% of the MVIC). The LR completed a significantly higher (31.6%, p < 0.05) total training volume than the SR. Both training groups enhanced the maximal number of repetitions to failure, with no significant differences in the magnitude of gains. The posttraining average velocity achieved by the SR at 40, 50, 60, 70, 80, and 90% of the total number of repetitions completed was significantly higher (p < 0.05) than the corresponding average velocity achieved on pretraining conditions, whereas no significant differences were observed in the LR. No significant changes in the MVIC or sEMG were observed in any group. We conclude that short-term elbow-flexor resistance training to failure, allowing 1 or 4 minutes of rest between sets, induces similar gains concerning local muscular endurance. Nevertheless, only the SR training approach reduced the rate of decline in the average repetition velocity during a set to failure. This can be of some importance in sport modalities in which not only the maximal number of repetitions (e.g., muscle endurance), but also a greater maintenance of high repetition velocities, may be critical for performance.  相似文献   

5.
This study examined the effect of volume, technique, and load upon single-repetition and total-repetition kinematics and kinetics during three loading schemes. Eleven recreationally trained males each performed a power (8 sets of 6 repetitions at 45% of one-repetition maximum [1RM], 3-minute rest periods, explosive and ballistic movements), hypertrophy (10 sets of 10 repetitions at 75% 1RM, 2-minute rest periods, controlled movements), and maximal strength (6 sets of 4 repetitions at 88% 1RM, 4-minute rest periods, explosive intent) scheme involving squats. Examination of repetition data showed that load intensity (% 1RM) generally had a direct effect on forces, contraction times, impulses, and work (i.e., increasing with load), whereas power varied across loads (p < 0.001). However, total-repetition forces, contraction times, impulses, work, and power were all greater in the hypertrophy scheme (p < 0.001), because of the greater number of repetitions performed (volume) as well as lifting technique. No differences in total forces were found between the equal-volume power and maximal strength schemes, but the former did produce greater total contraction times, work, and power (p < 0.001), which may also be attributed to repetition and technique differences. Total impulses were the only variable greater in the maximal strength scheme (p < 0.001). Thus, the interaction of load, volume, and technique plays an important role in determining the mechanical responses (stimuli) afforded by these workouts. These findings may explain disparities cited within research, regarding the effectiveness of different loading strategies for hypertrophy, maximal strength, and power adaptation.  相似文献   

6.
The purpose of this study was to determine the rate of recovery for recreational weight trainers between 2 sets of bench press to volitional exhaustion. Twenty-eight men performed 2 sets of the bench press at 75% of their previously determined 1 repetition maximum (1RM) to volitional exhaustion. Rest periods of 1, 3, or 5 minutes between sets were utilized on the 3 separate testing days. There was a significant decrease in the number of repetitions performed between the second sets at all rest periods. There were no significant differences in work performed (repetitions x weight) during the second set with the 3- and 5-minute rest periods, but the total work with a 1-minute rest period (1,389.1 +/- 529.9) was significantly less than both the 3- (1,494.9 +/- 451.0) and 5-minute (1,711.4 +/- 478.0) rest period. The data indicated that subjects were unable to fully recover between the first and second sets of maximal resistance exercise, regardless of the rest period. However, subjects were able to maintain a performance level of 8-12 repetitions and sustain the total work performed per set with as little as 3 minutes rest between sets.  相似文献   

7.
The purpose of this study was to investigate the acute effects of a heavy dynamic preload, consisting of 1 set of 5 repetition maximum (5RM) back squats, on countermovement vertical jump (VJ) and horizontal jump (HJ) performance. The study also investigated the ability of subjects to learn to apply the effects of the preload over subsequent training sessions. Nineteen (N = 19) resistance-trained men (age = 25.0 +/- 4.8 years; weight = 79.3 +/- 6.6 kg) participated in the study. Each subject took part in 4 practice and 4 testing sessions. The 4 practice sessions were included to allow for any learning effects of VJ and HJ to stabilize and to establish a true 5RM back squat. The 4 testing sessions were included to see if subjects were able to capitalize on the repeat exposure to the protocol. One practice session consisted of a 10-minute warm-up (5 minutes of cycling and 5 minutes of stretching), 2 sets of VJ and HJ (each set of VJ and HJ consisted of 4 jump repetitions) with a 5-minute rest between sets, progressive 5RM back squat evaluation, and 2 final sets of VJ and HJ. Both VJ and HJ increased approximately 2% over the 4 practice sessions, and 5RM back squat strength improved from 164.2 +/- 25.1 kg to 196.9 +/- 23.0 kg (p < or = 0.05). The 4 testing sessions each consisted of the standardized warm-up, 1 set of 4 VJs and HJs, a 5-minute rest, 5RM back squat, a 5-minute rest, and the final set of VJs and HJs. Pre- and post-5RM VJ and HJ order was randomly assigned. The results indicated no significant differences occurred between the mean or maximal values for either VJ or HJ as a consequence of the dynamic preload exercise. In addition, the results reflected an inability of subjects to benefit from the repeated exposure to the heavy dynamic preload exercise protocol.  相似文献   

8.
The purpose of this study was to compare the effects of 2 different rest period lengths during a resistance training session with the number of repetitions completed per set of each exercise, the volume completed over 3 sets of each exercise, and the total volume during a training session. Fourteen experienced, weight-trained men volunteered to participate in the study. All subjects completed 2 experimental training sessions. Both sessions consisted of 3 sets of 8 repetitions with an 8 repetition maximum resistance of 6 upper body exercises performed in a set manner (wide grip lat pull-down, close grip pull-down, machine seated row, barbell row lying on a bench, dumbbell seated arm curl, and machine seated arm curl). The 2 experimental sessions differed only in the length of the rest period between sets and exercises: 1 session with a 1-minute and the other with a 3-minute rest period. For all exercises, results demonstrate a significantly lower total number of repetitions for all 3 sets of an exercise when 1-minute rest periods were used (p < or = 0.05). The 3- and 1-minute protocols both resulted in a significant decrease from set 1 to set 3 in 4 of the 6 exercises (p < or = 0.05), whereas the 1-minute protocol also demonstrated a significant decrease from set 1 to set 2 in 2 of the 6 exercises (p < or = 0.05). The results indicate that, during a resistance training session composed of all upper body exercises, 1-minute rest periods result in a decrease in the total number of repetitions performed compared with 3-minute rest periods between sets and exercises.  相似文献   

9.
The aim of this research was to assess the effect of a single set of contrast preloading on peak vertical displacement (PD) during a loaded countermovement jump (LCMJ) training session. Nine strength-trained males participated in 2 randomly assigned, crossover design testing sessions consisting of 5 sets of 6 repetitions of 20-kg LCMJs with 3-minute rest intervals between sets. The preloading intervention was performed 3 minutes after the first set and 4 minutes before the second set of 20-kg LCMJs. The control (CON) group performed 1 set of 20-kg LCMJs, whereas the jump squat (JS) group performed 1 set of 40-kg LCMJs. The number of repetitions performed during each preloading condition was varied to match total concentric work between the 2 sessions. A significant (p < 0.05) preload x set interaction for PD was observed, with the JS group jumping significantly higher during the third set performed after the preload in comparison with the CON group. Analysis of peak power output and mean power output during the concentric movement for this set revealed that as the knee flexion angle increased, the effect of the preload was augmented. These results suggest that a single set of preloading exercises enhances performance during a lower-body explosive power training session; however, the effects of a single preloading set may not peak until midway through the training session.  相似文献   

10.
Research has indicated that multiple sets are superior to single sets for maximal strength development. However, whether maximal strength gains are achieved may depend on the ability to sustain a consistent number of repetitions over consecutive sets. A key factor that determines the ability to sustain repetitions is the length of rest interval between sets. The length of the rest interval is commonly prescribed based on the training goal, but may vary based on several other factors. The purpose of this review was to discuss these factors in the context of different training goals. When training for muscular strength, the magnitude of the load lifted is a key determinant of the rest interval prescribed between sets. For loads less than 90% of 1 repetition maximum, 3-5 minutes rest between sets allows for greater strength increases through the maintenance of training intensity. However, when testing for maximal strength, 1-2 minutes rest between sets might be sufficient between repeated attempts. When training for muscular power, a minimum of 3 minutes rest should be prescribed between sets of repeated maximal effort movements (e.g., plyometric jumps). When training for muscular hypertrophy, consecutive sets should be performed prior to when full recovery has taken place. Shorter rest intervals of 30-60 seconds between sets have been associated with higher acute increases in growth hormone, which may contribute to the hypertrophic effect. When training for muscular endurance, an ideal strategy might be to perform resistance exercises in a circuit, with shorter rest intervals (e.g., 30 seconds) between exercises that involve dissimilar muscle groups, and longer rest intervals (e.g., 3 minutes) between exercises that involve similar muscle groups. In summary, the length of the rest interval between sets is only 1 component of a resistance exercise program directed toward different training goals. Prescribing the appropriate rest interval does not ensure a desired outcome if other components such as intensity and volume are not prescribed appropriately.  相似文献   

11.
This aim of this study was to examine the free hormone (in saliva) responses to squat workouts performed by recreationally weight-trained males, using either a power (8 sets of 6 reps, 45% 1 repetition maximum [1RM], 3-minute rest periods, ballistic movements), hypertrophy (10 sets of 10 reps, 75% 1RM, 2-minute rest periods, controlled movements), or maximal strength scheme (6 sets of 4 reps, 88% 1RM, 4-minute rest periods, explosive intent). To determine the relative importance of the different training variables, these schemes were equated by workout duration with the power and strength schemes also equated by load volume. Salivary testosterone (T) and cortisol (C) both increased following the hypertrophy scheme (P < 0.05), with little to no hormonal change across the power and maximal strength schemes (P > 0.05). In general, the postexercise T and C responses to the hypertrophy scheme exceeded the other two schemes (P < 0.05). The greater volume of load lifted in the hypertrophy protocol over the same workout duration may explain the endocrine differences observed. The similar T and C responses to the power and maximal strength schemes (of equal volume) support such a view and suggest that differences in load intensity, rest periods, and technique are secondary to volume. Because the acute hormonal responses to resistance exercise contribute to protein metabolism, then load volume may be the most important workout variable activating the endocrine system and stimulating muscle growth.  相似文献   

12.
The purpose of this study was to compare the postexercise hypotensive response after different rest intervals between sets (1 and 2 minutes) in normotense older men. Seventeen older men (67.6 ± 2.2 years) with at least 1 year of strength training experience participated. After determination of 10 repetition maximum (10RM) loads for exercises, subjects performed 2 different strength training sessions. On the first day, volunteers performed 3 sets of 10 repetitions per exercise at 70% 10RM, with 1 or 2 minutes' rest interval between sets depending on random assignment. On the second day, the procedures were similar but with the other rest interval. There was no difference in systolic and diastolic blood pressure between rest intervals at any time point measure. Before 1- and 2-minute sessions, the systolic blood pressure values were 122.7 ± 6.0 and 123.2 ± 3.7 mm Hg, and diastolic blood pressure values were 80.5 ± 5.6 and 82.0 ± 3.7 mm Hg, respectively. Both 1 and 2 minute sessions still presented reduced values for systolic blood pressure after 60 minutes (102.9 ± 6.9 and 106.7 ± 5.4 mm Hg, respectively), while the diastolic blood pressure presented significant reductions for 50 minutes after a 1 minute session (12.1 to 5.6 mm Hg) and for 60 minutes after the 2 minute session (13.3 to 6.5 mm Hg). Additionally, the systolic and diastolic blood pressure effect size data demonstrated higher magnitudes at all time point measures after the 2-minute rest sessions. These results suggest a poststrength training hypotensive response for both training sessions in normotense older men, with higher magnitudes for the 2-minute rest session. Our findings suggest a potentially positive health benefit of strength training.  相似文献   

13.
The purpose of this study was to compare repetition performance and rating of perceived exertion (RPE) with 1-, 3-, or 5-minute rest intervals between sets of multi and single-joint resistance exercises. Fifteen resistance trained men (23.6 ± 2.64 years, 76.46 ± 7.53 kg, 177 ± 6.98 cm, bench press [BP] relative strength: 1.53 ± 0.25 kg·kg(-1) body mass) completed 12 sessions (4 exercises × 3 rest intervals), with each session involving 5 sets with 10 repetition maximum loads for the free weight BP, machine leg press (LP), machine chest fly (MCF), and machine leg extension (LE) exercises with 1-, 3-, 5-minute rest intervals between sets. The results indicated significantly greater BP repetitions with 3 or 5 minutes vs. 1 minute between sets (p ≤ 0.05); no significant difference was evident between the 3- and 5-minute rest conditions. For the other exercises (i.e., LP, MCF, and LE), significant differences were evident between all rest conditions (1 < 3 < 5; p ≤ 0.05). For all exercises, consistent declines in repetition performance (relative to the first set) were observed for all rest conditions, starting with the second set for the 1-minute condition and the third set for the 3- and 5-minute conditions. Furthermore, significant increases in RPE were evident over successive sets for both the multi and single-joint exercises, with significantly greater values for the 1-minute condition. In conclusion, both multi and single-joint exercises exhibited similar repetition performance patterns and RPE, independent of the rest interval length between sets.  相似文献   

14.
It is well known that most sports are characterized by the performance of intermittent high-intensity actions, requiring high muscle power production within different intervals. In fact, the manipulation of the exercise to rest ratio in muscle power training programs may constitute an interesting strategy when considering the specific performance demand of a given sport modality. Thus, the aim of this study was to evaluate the influence of different schemes of rest intervals and number of repetitions per set on muscle power production in the squat exercise between exercise to rest ratio-equated and -nonequated conditions. Nineteen young males (age: 25.7 ± 4.4 years; weight: 81.3 ± 13.7 kg; height: 178.1 ± 5.5 cm) were randomly submitted to 3 different resistance exercise loading schemes, as follows: short-set short-interval condition (SSSI; 12 sets of 3 repetitions with a 27.3-second interval between sets); short-set long-interval condition (SSLI; 12 sets of 3 repetitions with a 60-second interval between sets); long-set long-interval (LSLI; 6 sets of 6 repetitions with a 60-second rest interval between sets). The main finding of the present study is that the lower exercise to rest ratio protocol (SSLI) resulted in greater average power production (601.88 ± 142.48 W) when compared with both SSSI and LSLI (581.86 ± 113.18 W; 578 ± 138.78 W, respectively). Additionally, both the exercise to rest ratio-equated conditions presented similar performance and metabolic results. In summary, these findings suggest that shorter rest intervals may fully restore the individual's ability to produce muscle power if a smaller exercise volume per set is performed and that lower exercise to rest ratio protocols result in greater average power production when compared with higher ratio ones.  相似文献   

15.
The objective of this study was to examine the effects of rest interval length on perceived exertion and during 3 sets of 10 inertial knee extension repetitions. Thirty healthy men (n = 15) and women (n = 15) volunteers were randomly assigned to 1 of 3 groups (1-, 2-, or 3-minute rest interval length) following the establishment of each subject's 1 repetition maximum (1RM) for inertial knee extension exercise. Subjects in each group performed 3 sets of 10 repetitions at 70% of a theoretical 10RM (based on each subject's 1RM), with a 1-, 2-, or 3-minute rest interval between each set. Perceived exertion was recorded, via the Borg category-ratio scale, from each subject after each repetition of each set. The results demonstrated no significant rest interval length effect on perceived exertion across the 3 sets of 10 repetitions. The results revealed a significantly higher perceived exertion value following the first repetition in set 3 as compared to sets 2 and 1 in all groups. The increase in perceived exertion within each set, as described by the slope, was found to be significantly lowest in set 1, as compared to sets 2 and 3. The major findings of this study demonstrate that perceived exertion significantly increases in a similar manner across 3 sets of 10 knee extension repetitions, despite rest interval lengths of 1-3 minutes.  相似文献   

16.
The purpose of this study was to investigate the effectiveness of 4 weeks of low-intensity resistance training with blood-flow occlusion on upper and lower body muscular hypertrophy and muscular strength in National Collegiate Athletic Association Division IA football players. There were 32 subjects (average age 19.2 ± 1.8 years) who were randomized to an occlusion group or control group. The athletes performed 4 sets of bench press and squat in the following manner with or without occlusion: 30 repetitions of 20% predetermined 1 repetition maximum (1RM), followed by 3 sets of 20 repetitions at 20% 1RM. Each set was separated by 45 seconds. The training duration was 3 times per week, after the completion of regular off-season strength training. Data collected included health history, resting blood pressure, pretraining and posttraining bench press and squat 1RM, upper and lower chest girths, upper and lower arm girths, thigh girth, height, and body mass. The increases in bench press and squat 1RM (7.0 and 8.0%, respectively), upper and lower chest girths (3 and 3%, respectively), and left upper arm girth were significantly greater in the experiment group (p < 0.05). Occlusion training could provide additional benefits to traditional strength training to improve muscular hypertrophy and muscular strength in collegiate athletes.  相似文献   

17.
Changes in muscle mass and strength will vary, depending on the volume and frequency of training. The purpose of this study was to determine the effect of short-term equal-volume resistance training with different workout frequency on lean tissue mass and muscle strength. Twenty-nine untrained volunteers (27-58 years; 23 women, 6 men) were assigned randomly to 1 of 2 groups: group 1 (n = 15; 12 women, 3 men) trained 2 times per week and performed 3 sets of 10 repetitions to fatigue for 9 exercises, group 2 (n = 14; 11 women, 3 men) trained 3 times per week and performed 2 sets of 10 repetitions to fatigue for 9 exercises. Prior to and following training, whole-body lean tissue mass (dual energy x-ray absorptiometry) and strength (1 repetition maximum squat and bench press) were measured. Both groups increased lean tissue mass (2.2%), squat strength (28%), and bench press strength (22-30%) with training (p < 0.05), with no other differences. These results suggest that the volume of resistance training may be more important than frequency in developing muscle mass and strength in men and women initiating a resistance training program.  相似文献   

18.
Some research suggests that strength improvements are greater when resistance training continues to the point at which the individual cannot perform additional repetitions (i.e., repetition failure). Performing additional forced repetitions after the point of repetition failure and thus further increasing the set volume is a common resistance training practice. However, whether short-term use of this practice increases the magnitude of strength development with resistance training is unknown and was investigated here. Twelve basketball and 10 volleyball players trained 3 sessions per week for 6 weeks, completing either 4 x 6, 8 x 3, or 12 x 3 (sets x repetitions) of bench press per training session. Compared with the 8 x 3 group, the 4 x 6 protocol involved a longer work interval and the 12 x 3 protocol involved higher training volume, so each group was purposefully designed to elicit a different number of forced repetitions per training session. Subjects were tested on 3- and 6-repetition maximum (RM) bench press (81.5 +/- 9.8 and 75.9 +/- 9.0 kg, respectively, mean +/- SD), and 40-kg Smith Machine bench press throw power (589 +/- 100 W). The 4 x 6 and 12 x 3 groups had more forced repetitions per session (p < 0.01) than did the 8 x 3 group (4.1 +/- 2.6, 3.1 +/- 3.5, and 1.2 +/- 1.8 repetitions, respectively), whereas the 12 x 3 group performed approximately 40% greater work and had 30% greater concentric time. As expected, all groups improved 3RM (4.5 kg, 95% confidence limits, 3.1- 6.0), 6RM (4.7 kg, 3.1-6.3), bench press throw peak power (57 W, 22-92), and mean power (23 W, 4-42) (all p < or = 0.02). There were no significant differences in strength or power gains between groups. In conclusion, when repetition failure was reached, neither additional forced repetitions nor additional set volume further improved the magnitude of strength gains. This finding questions the efficacy of adding additional volume by use of forced repetitions in young athletes with moderate strength training experience.  相似文献   

19.
Whole-body vibration (WBV) may potentiate vertical jump (VJ) performance via augmented muscular strength and motor function. The purpose of this study was to evaluate the effect of different rest intervals after WBV on VJ performance. Thirty recreationally trained subjects (15 men and 15 women) volunteered to participate in 4 testing visits separated by 24 hours. Visit 1 acted as a familiarization visit where subjects were introduced to the VJ and WBV protocols. Visits 2-4 contained 2 randomized conditions per visit with a 10-minute rest period between conditions. The WBV was administered on a pivotal platform with a frequency of 30 Hz and an amplitude of 6.5 mm in 4 bouts of 30 seconds for a total of 2 minutes with 30 seconds of rest between bouts. During WBV, subjects performed a quarter squat every 5 seconds, simulating a countermovement jump (CMJ). Whole-body vibration was followed by 3 CMJs with 5 different rest intervals: immediate, 30 seconds, 1 minute, 2 minutes, or 4 minutes. For a control condition, subjects performed squats with no WBV. There were no significant (p > 0.05) differences in peak velocity or relative ground reaction force after WBV rest intervals. However, results of VJ height revealed that maximum values, regardless of rest interval (56.93 ± 13.98 cm), were significantly (p < 0.05) greater than the control condition (54.44 ± 13.74 cm). Therefore, subjects' VJ height potentiated at different times after WBV suggesting strong individual differences in optimal rest interval. Coaches may use WBV to enhance acute VJ performance but should first identify each individual's optimal rest time to maximize the potentiating effects.  相似文献   

20.
The purpose of this study was to investigate the effects of rest interval (RI) length on bench press performance in subjects with disparity in maximum strength. Two cohorts of subjects performed 3 bench press protocols in random order consisting of 3 sets of up to 10 repetitions with 75% of 1-repetition maximum (1RM) using either 1-, 2-, or 3-minute RIs between sets. In the first cohort, 22 men and women were studied to investigate gender influence. In the second cohort, 23 men were tested for 1RM bench press strength and placed into a low 1RM (mean = 80.7 ± 7.5 kg) or high 1RM (mean = 140.6 ± 11.9 kg) experimental group. The number of successful repetitions completed, average power, and velocity for each set were recorded. Women performed significantly more repetitions than men with 1-minute (26.9 ± 4.4 vs. 21.1 ± 3.5), 2-minute (29.0 ± 2.0 vs. 24.0 ± 4.5), and 3-minute (29.7 ± 1.8 vs. 25.8 ± 5.1) RIs. The magnitude of decline in average velocity and power was significantly higher in men than in women. Total number of repetitions performed was significantly greater in the low 1RM group than in the high 1RM group at 1-minute (21.6 ± 5.0 vs. 18.1 ± 2.0) and 2-minute RIs (24.2 ± 5.4 vs. 21.3 ± 2.8). Significant negative correlations were observed between 1RM bench press and total number of repetitions completed for 1- and 2-minute RIs (r = -0.558 and -0.490, respectively). These data indicate that maximal strength plays a role in bench press performance with varying RIs and suggest that shorter RIs may suffice in women to attain a specific volume.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号