首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Background and aim: Many people use balance training as a rehabilitation or habilitation modality. Although the time course of changes to temporal and spatial aspects of postural sway over the initial weeks of such training is as yet unclear. Particularly, we sought to explore the effects of training on sway during a dynamic task of stance on an ultra-compliant surface. Such a task provides different mechanical, and thus sensorimotor, constraints compared to stance on a solid surface.

Methods: Center of pressure (COP) was measured on an ultra-compliant surface atop a force plate at the start of each of 18?days of a 6-week balance training program. Range and standard deviation quantified amount of sway while velocity and Lyapunov exponent (LyE) quantify speed and rhythmicity of sway, respectively.

Results: Trend analysis indicated quadratic changes in COP range and standard deviation, with initial reductions followed by returns to initial values by the end of training. Linear reduction of movement velocity and LyE continued through the duration of the program. Reduced LyE indicates regular (self-similar) structure of the COP path.

Conclusions: These results provide insight to the developing postural strategy necessary for maintaining upright stance within the dynamics created by interactions with an ultra-compliant surface. Participants showed sensitivity to surface properties, moving both more slowly and with a more regular movement pattern; suggesting that they were able to develop a more feed-forward approach to the maintenance of balance by exploiting task constraints.  相似文献   

2.
Lateral ankle sprain (LAS) is one of the most common injuries incurred during sporting activities, and effective rehabilitation programs for this condition are challenging to develop. The purpose of this research was to compare the effect of 6 weeks of balance training on either a mini-trampoline or a dura disc on postural sway and to determine if the mini-trampoline or the dura disc is more effective in improving postural sway. Twenty subjects (11 men, 9 women) with a mean age of 25.4 +/- 4.2 years were randomly allocated into a control group, a dura disc training (DT) group, or a mini-trampoline (MT) group. Subjects completed 6 weeks of balance training. Postural sway was measured by subjects performing a single limb stance on a force plate. The disbursement of the center of pressure was obtained from the force plate in the medial-lateral and the anterior-posterior sway path and was subsequently used for pretest and posttest analysis. After the 6-week training intervention, there was a significant (p < 0.05) difference in postural sway between pre- and posttesting for both the MT (pretest = 56.8 +/- 20.5 mm, posttest = 33.3 +/- 8.5 mm) and DT (pretest = 41.3 +/- 2.6 mm, posttest = 27.2 +/- 4.8 mm) groups. There was no significant (p > 0.05) difference detected for improvements between the MT and DT groups. These results indicate that not only is the mini-trampoline an effective tool for improving balance after LAS, but it is equally as effective as the dura disc.  相似文献   

3.
The prevalence of sustaining a fall is particularly high in children. Deficits in postural control and muscle strength are important intrinsic fall risk factors. Thus, the purpose of this study was to investigate the impact of balance training (BT) followed by detraining on postural control, plantar flexor strength, and jumping height in prepubertal children. Thirty grade 1 school children participated in this study and were assigned to either an intervention class (INT, n = 15, age 6.7 ± 0.5 years) or a control class (n = 15, age 6.6 ± 0.5 years). The INT participated in 4 weeks of BT (3 per week) integrated in their physical education lessons. Pre, post, and follow-up tests included the measurements of postural sway on a balance platform, maximal torque and rate of force development of the plantar flexors on an isokinetic device, and jumping height on a force platform. The significance level was set at p < 0.05. Balance training resulted in tendencies in terms of small to medium interaction effects yet not statistically significant improvements in postural sway (f = 0.14; p > 0.05), force production of the plantar flexors (f = 0.18; p> 0.05), and jumping height (f = 0.25; p> 0.05). Immaturity of the postural control system and deficits in attentional focus during practice of balance exercises could be responsible for the nonsignificant findings in this study. Thus, other training regimen (e.g., resistance training) should be applied alone or in combination with BT, which may have the potential to promote balance and strength in children.  相似文献   

4.
Although the identification and characterization of limb load asymmetries during quiet standing has not received much research attention, they may greatly extend our understanding of the upright stance stability control. It seems that the limb load asymmetry factor may serve as a veridical measure of postural stability and thus it can be used for early diagnostic of the age-related decline in balance control. The effects of ageing and of vision on limb load asymmetry (LLA) during quiet stance were studied in 43 healthy subjects (22 elderly, mean age 72.3+/-4.0 yr, and 21 young, mean age 23.9+/-4.8 yr). Postural sway and body weight distribution were recorded while the subject was standing on two adjacent force platforms during two 120 s trials: one trial was performed with the eyes open (EO), while the other trial was with the eyes closed (EC). The results indicate that LLA was greater in the old adults when compared with the young control subjects. The LLA values were correlated with the postural sway magnitudes especially in the anteroposterior direction. Eyes closure which destabilized posture resulted in a significant increase of body weight distribution asymmetry in the elderly but not in the young persons. The limb load difference between EO and EC conditions showed a significantly greater effect of vision on LLA in the elderly compared to the young subjects. The observed differences in the LLA may be attributed to the decline of postural stability control in the elderly. Ageing results in the progressive decline of postural control and usually the nervous system requires more time to complete a balance recovery action. To compensate for such a deficiency, different compensatory strategies are developed. One of them, as evidenced in our study, is preparatory limb unload strategy (a stance asymmetry strategy) which could significantly shorten reaction time in balance recovery.  相似文献   

5.
Anecdotal and research evidence is that vertical jump performance declines over the competitive volleyball season. The purpose of this study was to evaluate whether a short period of ballistic resistance training would attenuate this loss. Fourteen collegiate women volleyball players were trained for 11 weeks with periodized traditional and ballistic resistance training. There was a 5.4% decrease (p < 0.05) in approach jump and reach height during the traditional training period (start of season to midseason), and a 5.3% increase (p < 0.05) during the ballistic training period (midseason to end of season), but values were not different from start to end of season. These changes in overall jump performance were reflective of changes in underlying neuromuscular performance variables: in particular, power output and peak velocity during loaded jump squats, countermovement jumps, and drop jumps. During the first 7 weeks of traditional heavy resistance training, it appears that the neuromuscular system is depressed, perhaps by the combination of training, game play, and skills practice precluding adequate recovery. Introduction of a novel training stimulus in the form of ballistic jump squats and reduction of heavy resistance training of the leg extensors stimulated a rebound in performance, in some cases to exceed the athlete's ability at the start of the season. Periodization of in-season training programs similar to that used in this study may provide volleyball players with good vertical jump performance for the crucial end-of-season games.  相似文献   

6.
Aerobic capacity and body composition were measured at 3 time points over a 1-year period in 26 Division 1A women soccer players from Texas A&M University, in order to determine whether there were seasonal changes in these parameters. Subjects were tested in December, immediately following a 4-month competitive season; in April, following 15 weeks of strength and conditioning; and immediately prior to the start of the regular season in August, following a 12-week summer strength and conditioning program. A periodized strength and conditioning program design was incorporated in order to optimize anaerobic and oxidative capacity immediately prior to the regular competitive season. Significant differences in VO2max were measured between August (49.24 +/- 4.38 ml x kg(-1) x min(-1)) and December (44.87 +/- 4.61 ml x kg(-1) x min(-1)). No significant changes in aerobic capacity were found between April (47.43 +/- 4.01 ml x kg(-1) x min(-1)) and August (49.64 +/- 5.25 ml x kg(-1) x min(-1)). Significant increases in body fat were measured between August (15.71 +/- 2.92%) and December (18.78 +/- 2.79%), before and after the competitive season, respectively. No significant changes in body fat were found between April (16.24 +/- 2.95%) and August (15.71 +/- 2.92%). The results of this study suggest that decreases in muscle mass over the course of a regular competitive season contribute to decreases in aerobic capacity in collegiate women soccer players. Although it is unknown whether this decrease in muscle mass is the result of inadequate training or a normal adaptation to the physiological demands imposed by soccer, the results of the current study suggest that resistance training volume should be maintained during the competitive season, in order to maintain preseason levels of muscle mass.  相似文献   

7.
The aim of the study was to examine whether six weeks of endurance training minimizes the effects of fatigue on postural control during dynamic postural perturbations. Eighteen healthy volunteers were assigned to either a 6-week progressive endurance training program on a cycle ergometer or a control group. At week 0 and 7, dynamic exercise was performed on an ergometer until exhaustion and immediately after, the anterior–posterior centre of pressure (COP) sway was analyzed during full body perturbations. Maximal voluntary contractions (MVC) of the knee flexors and extensors, muscle fiber conduction velocity (MFCV) of the vastus lateralis and medialis during sustained isometric knee extension contractions, and power output were measured. Following the training protocol, maximum knee extensor and flexor force and power output increased significantly for the training group with no changes observed for the control group. Moreover, the reduction of MFCV due to fatigue changed for the training group only (from 8.6% to 3.4%). At baseline, the fatiguing exercise induced an increase in the centre of pressure sway during the perturbations in both groups (>10%). The fatiguing protocol also impaired postural control in the control group when measured at week 7. However, for the training group, sway was not altered after the fatiguing exercise when assessed at week 7. In summary, six weeks of endurance training delayed the onset of muscle fatigue and improved the ability to control balance in response to postural perturbations in the presence of muscle fatigue. Results implicate that endurance training should be included in any injury prevention program.  相似文献   

8.
The present work investigated the effect of different breathing strategies performed with and without body immobilization on postural performance. Sway amplitude and mean velocity of center of pressure displacement in the anteroposterior and mediolateral planes were assessed by the force platform in 48 healthy volunteers. Balance was estimated during quiet breath, inspiratory, expiratory breath holding and hyperventilation with and without immobilization of the neck, trunk, hip, and knee joints. In general, restriction of body mobility caused a reduction of the postural stability in anteroposterior plane, while mediolateral body sway decreased. Our results imply that body immobilization reduced the ability to compensate respiratory disturbances in the anteroposterior direction and, on the contrary, facilitated mamtaining balance in the mediolateral plane.  相似文献   

9.
Lateral sway of subjects in spontaneous dynamic balance conditions on a seesaw platform was measured during a visual stimulation monocularly produced by a rotating glass covered with a prism membrane. Prism rotation induced the perception of a circular translation of the whole visual field and an ocular pursuit movement. Therefore, the retinal slip that occurs in normal pursuit was cancelled. Strong stereo-typed postural reactions were observed in a direction that depended upon both the vertical visual field deviation and the eye stimulated: upper position of the right visual field induced a leftward sway resulting from an extension of the right hemibody; symmetrical reactions occurred for the left stimulation. The results suggest that the postural reactions recorded depend on the isolated oculomotor activity and, in addition, on retinal afferences corresponding to the temporal crescent of the stimulated side, which orientates the postural reaction on the homolateral lower limb muscles.  相似文献   

10.
Effects of contact of a hand or fingertip with an additional support on human balance on stationary and movable surfaces were studied. Contact with a fixed or free vertical bar was established either by a handgrip or a touch with the tip of the index finger. Amplitudes and lengths of posturograms under conditions of free standing and standing with additional proprioceptive information were compared. It was shown that contact with an additional support during standing on a stationary surface with closed eyes decreases the amplitude of sagittal sway of the center of gravity by 1.3- to 2-fold as compared to standing without such a contact, independently of the contact type and the degree of bar mobility. During standing on a movable platform (which resulted in a three- to fourfold increase in the amplitude of sway as compared to standing on the floor), the grasp of the fixed bar decreased the amplitude of sagittal sway by five- to ninefold and the touch led to a three- to fourfold decrease. The sway of the common center of gravity upon contact with the movable bar during standing on the unstable platform was reduced by half on both planes independently of the contact type. The results suggest that sensory information from receptors of the hand contacting with a stationary or movable support substantially supplements the current neural representation of the spatial position of the body, correcting and changing the direction of postural reactions and the perception of the location of external objects, which ensures the ability of the CNS to maintain the balance under complicated conditions and to provide highly stable standing.  相似文献   

11.
Mechanical properties of the muscle-tendon unit change with aging, but it is not known how these modifications influence the control of lower leg muscles during upright stance. In this study, young and elderly adults stood upright on a force platform with and without vision while muscle architecture and myotendinous junction movements (expressed relative to the change in the moment on the x-axis of the force platform) were recorded by ultrasonography and muscle activity by electromyography. The results show that the maximal amplitude of the sway in the antero-posterior direction was greater in elderly adults (age effect, P < 0.05) and was accompanied by an increase in lower leg muscle activity compared with young adults. Moreover, the data highlight that fascicles shorten during forward sway and lengthen during backward sways but more so for young (-4 ± 3 and -4 ± 3 mm/Nm, respectively) than elderly adults (-0.7 ± 3 and 0.8 ± 3 mm/Nm, respectively; age × sway, P < 0.001). Concurrently, the pennation angle increased and decreased during forward and backward sways, respectively, with greater changes in young than elderly adults (age × sway, P < 0.001). In contrast, no significant differences were observed between age groups for tendon lengthening and shortening during sways. The results indicate that, compared with young, elderly adults increase the stiffness of the muscular portion of the muscle-tendon unit during upright stance that may compensate for the age-related decrease in tendon stiffness. These observations suggest a shift in the control strategy used to maintain balance.  相似文献   

12.
Impaired balance control ability and degraded functional mobility increases the risk of falling in elderly people. The elderly show more postural sway when standing compared with young people. A sway fall occurs when the center of gravity moves outside the limit of stability. In order to reduce the fall risk from the excessive sway, this study presents the design of wearable balance assistance device for the elderly. Scissored-pair control moment gyroscopes were selected as a torque actuator. A two-axis inclination sensor was used to detect the inclined angle of the wearer’s body. The direction of sway was calculated from the detected inclined angle. The designed device weighs 8.2 kg with a height of 32 cm × width of 40 cm × depth of 22 cm. A multi-segment model of a standing human was used to investigate the device’s performance for balance recovery. According to the simulations, balance recovery in any direction was successfully accomplished with the appropriate initial angle. The relationship between the effective initial angle and detected inclined angle was subsequently established. The stability provided by activation of the device was able to limit the unstable user’s sway boundary. The designed device shows promise for use as a balance assistance device for the elderly.  相似文献   

13.
A comparison has been made between two methods of measuring body sway during quiet standing. In the first method a Wright ataxiameter was used to measure the trunk movement in the anteroposterior direction; whilst in the second method a Kistler force platform was used to monitor the locus of the resultant ground reaction force. The good correlation between the two sets of data has resulted in a regression equation to convert one set into the equivalent other set. This equation should be useful while comparing the sway data from various research centres.  相似文献   

14.
Previous research has shown that changes in spinal excitability occur during the postural sway of quiet standing. In the present study, it was of interest to examine the independent effects of sway position and sway direction on the efficacy of the triceps surae Ia pathway, as reflected by the Hoffman (H)-reflex amplitude, during standing. Eighteen participants, tested under two different experimental protocols, stood quietly on a force platform. Percutaneous electrical stimulation was applied to the posterior tibial nerve when the position and direction of anteroposterior (A-P) center of pressure (COP) signal satisfied the criteria for the various experimental conditions. It was found that, regardless of sway position, a larger amplitude of the triceps surae H-reflex (difference of 9-14%; P = 0.005) occurred when subjects were swaying in the forward compared with the backward direction. The effects of sway position, independent of the sway direction, on spinal excitability exhibited a trend (P = 0.075), with an 8.9 +/- 3.7% increase in the H-reflex amplitude occurring when subjects were in a more forward position. The observed changes to the efficacy of the Ia pathway cannot be attributed to changes in stimulus intensity, as indicated by a constant M-wave amplitude, or to the small changes in the level of background electromyographic activity. One explanation for the changes in reflex excitability with respect to the postural sway of standing is that the neural modulation may be related to the small lengthening and shortening contractions occurring in the muscles of the triceps surae.  相似文献   

15.
While it is not uncommon for athletes to use foot orthoses to relieve pain and improve sports performance, little has been known about their effects on basketball performance. Free-throw basketball shooting is very important. However, fatigue deteriorates postural balance which might decrease free-throw shooting performance. This study investigated the effects of foot orthoses on dynamic balance and accuracy performance during free-throw shooting before and after physical fatigue was induced. Thirteen male recreational basketball players were tested with two foot orthoses (medial-arch support versus flat control) and fatigue conditions (before and after fatigue), when they performed standard free-throw shooting on a force platform. Results revealed that fatigue significantly increased coefficient of variance of medial-lateral center of pressure (CoP) excursion when participants worn flat control orthoses (p < 0.05). Meanwhile, foot orthoses improved dynamic balance during shooting as they significantly reduced total resultant and anterior-posterior sway excursions as well as resultant and anterior-posterior CoP velocities, and base of support area. Although this study found that fatigue and orthoses did not significantly affect the scores gained by free-throw shooting, the significant improvements in dynamic balance during shooting with the use of foot orthoses could have considerable impact on motor control during basketball shooting.  相似文献   

16.
Swiss Balls used as a platform for training provide an unstable environment for force production. The objective of this study was to measure differences in force output and electromyographic (EMG) activity of the pectoralis major, anterior deltoid, triceps, latissimus dorsi, and rectus abdominus for isometric and dynamic contractions under stable and unstable conditions. Ten healthy male subjects performed a chest press while supported on a bench or a ball. Unstable isometric maximum force output was 59.6% less than under stable conditions. However, there were no significant differences in overall EMG activity between the stable and unstable protocols. Greater EMG activity was detected with concentric vs. eccentric or isometric contractions. The decreased balance associated with resistance training on an unstable surface may force limb musculature to play a greater role in joint stability. The diminished force output suggests that the overload stresses required for strength training necessitate the inclusion of resistance training on stable surfaces.  相似文献   

17.
Evidence indicates that leg weakness in older adults is associated with decreased control of balance. The gender-specific implications of strength training on control of balance in older men and women remains unknown. This study examined the initial adaptations to 12 weeks of low-volume, single-set-to-failure strength training and its effect on quadriceps strength and control of multidirectional balance in previously untrained older men (n = 11) and women (n = 11) 59-83 years of age. Leg strength increased 23-30% (p < 0.001) across genders; however, the effect on balance varied between genders. No significant changes were noted in the women, whereas 37% (p < 0.014) more sway in the medial-lateral direction was noted in the men, with no change in the anterior-posterior direction. These results demonstrate that this training protocol may not be effective for improving balance and may lead to worsening of balance in older men.  相似文献   

18.
The influence of foot position on standing balance   总被引:3,自引:0,他引:3  
To test the hypothesis that variations in foot position would significantly affect standing balance, we studied ten normal subjects on a Kistler force platform which measured the travel and center of pressure displacement. With the feet together there was substantially more mediolateral (ML) travel than with the axes of the feet 15, 30 or 45 cm apart and the mean ML position of the center of pressure was displaced toward the right; there was no consistent effect on anteroposterior (AP) travel or position. As the right foot was placed 10 and 30 cm forward or back, the least amount of ML and AP travel occurred with the feet even or at 10 cm either direction; the mean AP and ML position moved toward the foot which was placed more posteriorly. Of the five foot angles ranging from toes-out 45 degrees to toes-in 45 degrees, the extent of ML and AP travel was lowest in the toes-out 25 degrees position and greatest in the toes-in 45 degrees position; the mean AP and ML position was farthest forward and to the right with toes-in 45 degrees. These findings have implications for the prosthetic replacement of the lower limbs, sports, ergonomics and postural sway studies.  相似文献   

19.
Gait initiation from toe-standing is common in patients with upper motor neurone (UMN) pathology as well as in able-bodied subjects during certain dance and athletic situations. It is unclear whether balance problems in patients who toe-walk are due to the underlying pathology, or due to initiating gait from toe-standing. The aim of this study was to compare the biomechanics of gait initiation from toe-standing to that from heel-toe standing in healthy able-bodied subjects. Data were collected for three seconds prior to, and three seconds after, a visual signal to initiate gait. Ground reaction force and centre of pressure (COP) data were collected with an AMTI force platform, and electromyographic and kinematic data were collected from each limb with a Vicon motion analysis system. When initiating gait from toe-standing, there was a smaller backward displacement of the COP compared to heel-toe standing. In addition, greater forward momentum was generated, and there was an increase in gastrocnemius, rectus femoris and biceps femoris muscle activity. There were no differences in COP displacement or momentum generated in the mediolateral direction for the two conditions. Thus, initiating gait from toe-standing allows one to generate greater amounts of forward momentum but not at the expense of generating excessive stance-side momentum. This may be an advantageous method of initiating movement for dancers and athletes in certain situations. This work also suggests that balance problems in patients with UMN pathology are likely due to the underlying pathology and are not due to initiating gait from toe-standing.  相似文献   

20.
Textured insoles may enhance sensory input on the plantar surfaces of the feet, thereby influencing neuromuscular function. The aim of this study was to investigate whether textured surfaces alter postural stability and lower limb muscle activity during quiet bipedal standing balance with eyes open. Anterior–posterior (AP) and mediolateral (ML) sway variables and the intensity of electromyographic (EMG) activity in eight dominant lower limb muscles were collected synchronously over 30 s in 24 young adults under three randomised conditions: control surface (C), texture 1 (T1) and texture 2 (T2). Repeated measures ANOVA showed that the textured surfaces did not significantly affect AP or ML postural sway in comparison to the control condition (p > 0.05). Neither did the textured surfaces significantly alter EMG activity in the lower limbs (p > 0.05). Under the specific conditions of this study, texture did not affect either postural sway or lower limb muscle activity in static bipedal standing. The results of this study point to three areas of further work including the effect of textured surfaces on postural stability and lower limb muscle activity: (i) in young healthy adults under more vigorous dynamic balance tests, (ii) post-fatigue, and (iii) in older adults presenting age-related deterioration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号