首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To investigate the positional physical requirements necessary to be drafted into the National Football League (NFL), data from the annual NFL combine over the years 2005-2009 were examined. Only those players invited to the combine and subsequently drafted in the same year (n = 1,136) were included in the study. Data from 8 combine physical performance tests were examined for 15 positions. Combine measures evaluated for the center, cornerback, defensive end, defensive tackle, free safety, fullback, inside linebacker, offensive guard, offensive tackle, outside linebacker, quarterback, running back, strong safety, tight end, and wide receiver positions were the 9.1-, 18.3-, and 36.6-m sprints, the vertical and broad jumps, the 18.3-m shuttle run, the 3-cone drill, and the 102.1-kg bench press for maximum repetitions and, from this, a predicted measure of 1 repetition maximum. A 1-way analysis of variance detected differences in all 9 performance measures (p < 0.01). Post hoc independent t-tests indicated that over most tests many positions exhibited outcomes significantly different from most other positions. Generally, lineman positions performed inferiorly in sprint, jump and change-of-direction ability measures and superiorly in the upper body strength measures. Conversely, defensive back positions were the worst performers in the upper body strength test, and wide receivers and defensive backs were the best performers in all other measures. In general, offensive and defensive positions that commonly compete directly against one another display similar physical characteristics. Any advantages (statistically significant and not) between positions in direct competition were consistently in favor of defensive positions. The results of the present research present position-specific profiles for each of 15 positions. Coaches and practitioners will be able to use the findings of this research to better prepare athletes for entry into the NFL.  相似文献   

2.
The performance of 326 collegiate football players attending the 2000 National Football League combine was studied to determine whether draft status could be predicted from performance measurements. The combine measured height and weight along with 9 performance tests: 225-lb bench press test, 10-yd dash, 20-yd dash, 40-yd dash, 20-yd proagility shuttle, 60-yd shuttle, 3-cone drill, broad jump, and vertical jump. Prediction equations were generated for 7 position categories with varying degrees of accuracy-running backs (RBs), r(2) = 1.00; wide receivers (WRs), r(2) = 1.00; offensive linemen, r(2) = 0.70; defensive linemen, r(2) = 0.59; defensive backs (DBs), r(2) = 1.00; linebackers, r(2) = 0.22; and quarterbacks, r(2) = 0.84. The successes of the prediction equations are related to the ability of the individual tests to assess the necessary skills for each position. This study concludes that the combine can be used to accurately predict draft status of RBs, WRs, and DBs. The equations can also be used as a good to fair estimate for other positions.  相似文献   

3.
The authors investigate the correlation between National Football League (NFL) combine test results and NFL success for players drafted at three different offensive positions (quarterback, running back, and wide receiver) during a recent 6-year period, 1999-2004. The combine consists of series of drills, exercises, interviews, aptitude tests, and physical exams designed to assess the skills of promising college football players and to predict their performance in the NFL. Combine measures examined in this study include 10-, 20-, and 40-yard dashes, bench press, vertical jump, broad jump, 20- and 60-yard shuttles, three-cone drill, and the Wonderlic Personnel Test. Performance criteria include 10 variables: draft order; 3 years each of salary received and games played; and position-specific data. Using correlation analysis, we find no consistent statistical relationship between combine tests and professional football performance, with the notable exception of sprint tests for running backs. We put forth possible explanations for the general lack of statistical relations detected, and, consequently, we question the overall usefulness of the combine. We also offer suggestions for improving the prediction of success in the NFL, primarily the use of more rigorous psychological tests and the examination of collegiate performance as a job sample test. Finally, from a practical standpoint, the results of the study should encourage NFL team personnel to reevaluate the usefulness of the combine's physical tests and exercises as predictors of player performance. This study should encourage team personnel to consider the weighting and importance of various combine measures and the potential benefits of overhauling the combine process, with the goal of creating a more valid system for predicting player success.  相似文献   

4.
The purpose of this study was to investigate the relationships between the athletic skills measured at the National Football League (NFL) combine. The combine comprises the following tests: 36.6-m sprint with split times at 9.1 and 18.3 m, vertical and horizontal jumps, 18.3-m shuttle run, 3-cone drill, and 102.1-kg bench press. Draftees to the NFL who participated in the annual combine from 2005 to 2009 were included in the study (n = 1,136). Pearson's (r) correlations were calculated to determine the relationships between the tests, and coefficients of determination (r) were used to determine common variance. The 9.1-, 18.3-, and 36.6-m sprint times are nearly perfectly correlated (r ranges from 0.900 to 0.967) as are the change-of-direction ability tests, 18.3-m shuttle run, and 3-cone drill (r = 0.948), suggesting similar skills are being measured. Performance in both jumping tasks is more strongly associated with longer sprint distances, suggesting mechanisms such as the stretch-shortening cycle may be more important at maximal, or near-maximal, speeds. The correlations between change-of-direction ability and sprinting and jumping are generally much weaker (r ranges from 0.250 to -0.653), suggesting less association and independent motor skills. Although not particularly large correlation coefficients, bench press performance is positively correlated with outcomes in all running drills and inversely correlated with jump abilities, suggesting that in the observed cohort, upper body strength may be of little benefit to these tasks. Incorporation of a nonacceleration influenced (i.e., moving start) measure of maximal speed may be preferred if the intention of a test battery is to measure independent motor skills. Further, when constructing test batteries, either the 18.3-m shuttle or 3-cone drill is likely sufficient as a measure of change-of-direction ability. Test batteries should be constructed to measure independent motor skills.  相似文献   

5.
The objective of this study was to investigate the need to normalize, for body mass, explosive functional tasks in a population exhibiting diverse body masses. Measures investigated in elite college American football players attending the National Football League's annual combine (n = 1,136) were the 9.1-, 18.3-, and 36.6-m sprints, vertical and horizontal jumps, 18.3-m shuttle, and 3-cone drill. To determine the relationship between body mass and performance outcomes, Pearson's correlation coefficients (r) were generated using log-transformed data. Task-specific allometric exponents, accounting for body mass, were also determined. The strength of the correlations suggests that sprint and jump abilities are associated with body mass, whereas change-of-direction ability is not. The determined allometric exponents range between 0.296 and -0.463 for the sprint and jump tasks and are -0.022 and -0.006 for the 18.3-m shuttle and the 3-cone drill, respectively. In populations exhibiting relatively large variations in body mass, normalization of sprint and jump abilities is recommended, whereas normalization of change-of-direction ability is unwarranted. Novel suggestions derived from the present research are that sprint and jump abilities in diverse populations warrant normalization and that physical attributes associated with explosive functional movements deserve attribute-specific consideration when contemplating normalization.  相似文献   

6.
Volleyball players need to sprint and change direction during a match. Lower-body power, often measured by jump tests, could contribute to faster movements. How different jumps relate to linear and change-of-direction (COD) speed has not been analyzed in Division I (DI) collegiate women’s volleyball players. Fifteen female volleyball players completed the vertical jump (VJ), two-step approach jump (AppJ), and standing broad jump (SBJ). Peak power and power-to-body mass ratio (P:BM) were derived from VJ and AppJ height; relative SBJ was derived from SBJ distance. Linear speed was measured via a 20-m sprint (0–10 and 0–20 m intervals); COD speed was measured using the pro-agility shuttle. Pearson’s correlations (p < 0.05) calculated relationships between the power variables, and speed tests. There were no significant relationships between the power variables and the 0–10 m sprint interval. Greater VJ height (r = -0.534) and P:BM (r = -0.557) related to a faster 0–20 m sprint interval. This be due to a greater emphasis on the stretch-shortening cycle to generate speed over 20 m. However, although a 20-m sprint may provide a measure of general athleticism, the distance may not be specific to volleyball. This was also indicated as the AppJ did not relate to any of the speed tests. Nonetheless, VJ height and P:BM, and SBJ distance and relative SBJ, all negatively correlated with the proagility shuttle (r = -0.548 to -0.729). DI women’s collegiate volleyball players could develop absolute and relative power in the vertical and horizontal planes to enhance COD speed.  相似文献   

7.
The objective of this study was to determine performance differences between individual and competitive trials of the 40-yard dash. Physically active college men (n = 25) and women (n = 29) performed an individual 40-yard dash, followed by completion of the Sports Competition Trait Inventory (SCTI) before performing a paired 40-yard dash against a time-matched competitor. All sprints were performed on an indoor rubberized track using photoelectric gates to start and stop a digital timer. In addition, 3 timers used hand-held stopwatches to record the individual sprint time. There was no significant difference (p = 0.10) between men (120.3 +/- 16.6) and women (111.7 +/- 20.3) on the SCTI. There was no significant difference between individual and competitive 40-yard dash times for either men (5.21 +/- 0.24 and 5.19 +/- 0.23 seconds, respectively) or women (6.12 +/- 0.31 and 6.11 +/- 0.32 seconds, respectively). The correlation between SCTI and both individual and competitive 40-yard dashes was significant (p < 0.05) for women (r = -0.45 and -0.44, respectively) but not for men (r = -0.10 and 0.10, respectively). Electronic times (5.70 +/- 0.54 seconds) were not significantly different from 1 hand-timer (5.71 +/- 0.56 seconds) but were significantly faster than the other 2 timers (5.80 +/- 0.58 and 5.82 +/- 0.57 seconds). Averaging the 3 hand times (5.78 +/- 0.56 seconds) for comparison with the electronic timing (5.70 +/- 0.54 seconds) produced a high correlation (r = 0.96) but a significantly slower time (p < 0.05). A competitive environment does not appear to improve short sprint times in either men or women. In addition, hand timing may not always produce faster times compared to electronic timing.  相似文献   

8.
Twenty members of an National Collegiate Athletic Association Division III collegiate football team were assigned to either an Olympic lifting (OL) group or power lifting (PL) group. Each group was matched by position and trained 4-days.wk(-1) for 15 weeks. Testing consisted of field tests to evaluate strength (1RM squat and bench press), 40-yard sprint, agility, vertical jump height (VJ), and vertical jump power (VJP). No significant pre- to posttraining differences were observed in 1RM bench press, 40-yard sprint, agility, VJ or in VJP in either group. Significant improvements were seen in 1RM squat in both the OL and PL groups. After log10-transformation, OL were observed to have a significantly greater improvement in Delta VJ than PL. Despite an 18% greater improvement in 1RM squat (p > 0.05), and a twofold greater improvement (p > 0.05) in 40-yard sprint time by OL, no further significant group differences were seen. Results suggest that OL can provide a significant advantage over PL in vertical jump performance changes.  相似文献   

9.
10.
The purpose of this study was to identify relationships between core stability and various strength and power variables in strength and power athletes. National Collegiate Athletic Association Division I football players (height 184.0 +/- 7.1 cm, weight 100.5 +/- 22.4 kg) completed strength and performance testing before off-season conditioning. Subjects were tested on three strength variables (one-repetition maximum [1RM] bench press, 1RM squat, and 1RM power clean), four performance variables (countermovement vertical jump [CMJ], 20- and 40-yd sprints, and a 10-yd shuttle run), and core stability (back extension, trunk flexion, and left and right bridge). Significant correlations were identified between total core strength and 20-yd sprint (r = -0.594), 40-yd sprint (r = -0.604), shuttle run (r = -0.551), CMJ (r = 0.591), power clean/body weight (BW) (r = 0.622), 1RM squat (r = -0.470), bench press/BW (r = 0.369), and combined 1RM/BW (r = 0.447); trunk flexion and 20-yd sprint (r = -0.485), 40-yd sprint (r = -0.479), shuttle run (r = -0.443), CMJ (r = 0.436), power clean/BW (r = 0.396), and 1RM squat (r = -0.416); back extension and CMJ (r = 0.536), and power clean/BW (r = 0.449); right bridge and 20-yd sprint r = -0.410) and 40-yd sprint (r = -0.435), CMJ (r = 0.403), power clean/BW (r = 0.519) and bench press/BW (r = 0.372) and combined 1RM/BW (r = 0.406); and left bridge and 20-yd sprint (r = -0.376) and 40-yd sprint (r = -0.397), shuttle run (r = -0.374), and power clean/BW (r = 0.460). The results of this study suggest that core stability is moderately related to strength and performance. Thus, increases in core strength are not going to contribute significantly to strength and power and should not be the focus of strength and conditioning.  相似文献   

11.
The purpose of this study was to evaluate changes in anaerobic endurance in elite First-league soccer players throughout 2 consecutive seasons, in 2 phases, with and without high-intensity situational drills. Eighteen soccer players were tested before and after the 8-week summer conditioning and again in the next season. The measured variables included 300-yard shuttle run test, maximal heart rate, and maximal blood lactate at the end of the test. During the first phase of the study, the traditional sprint training was performed only 2 x weeks and consisted of 15 bouts of straight-line sprinting. In the second year the 4 x 4 min drills at an intensity of 90-95% of HRmax, separated by periods of 3-minute technical drills at 55-65% of HRmax were introduced. Statistical significance was set at P 相似文献   

12.
The aim of this research was to analyse the capacity of a home-based training programme to preserve aerobic capacity and jumping performance in top-level handball players during the COVID-19 lockdown. Eleven top-level male handball players from the same team participated in the study. A submaximal shuttle run test and a counter-movement jump test were used to measure the players’ aerobic fitness and lower limb explosive strength, respectively. A 9-week home-based training programme was followed during lockdown. Pre-test measurements were assessed before the pandemic on 29 January 2020 and ended on 18 May 2020. Moderate significant mean heart rate increases were found in the late stages of the submaximal shuttle run test after the lockdown (stage 5, 8.6%, P = 0.015; ES = 0.873; stage 6, 7.7%, P = 0.020; ES = 0.886; stage 7, 6.4%, P = 0.019; ES = 0.827). Moderate significant blood lactate increases were observed immediately after the submaximal shuttle run test following the lockdown (30.1%, P = 0.016; ES = 0.670). In contrast, no changes were found in jump performance. A structured home-based training programme during the COVID-19 lockdown preserved lower limb explosive strength but was an insufficient stimulus to maintain aerobic capacity in top-level handball players.  相似文献   

13.
Performance data for 261 NCAA Division 1A collegiate football players were analyzed to determine if player position, body weight, body fat, and training time were correlated with changes in performance in the following events: power clean (PC), bench press (BP), squat (SQ), vertical jump (VJ), 40-yd dash (40yd), and 20-yd shuttle (20yd). Individual positions were combined into the following groups: (A) wide receivers, defensive backs, and running backs, (B) linebackers, kickers, tight ends, quarterbacks, and specialists, and (C) linemen. Increases in body weight were positively correlated with increases in BP and PC performance for all groups. Increases in body fat were negatively correlated with performance in the PC and VJ for all groups. For group C, increases in body fat were also negatively correlated with performance in the 40yd and 20yd. Group and training time exhibited no linear relationship with performance in any of the tested events. No linear relationships were observed between the independent variables and performance in the SQ. When individual training data were analyzed longitudinally, a nonlinear increase in performance in the PC, BP, and SQ was observed as training time increased, with the greatest rate of change occurring between the first and second semesters of training.  相似文献   

14.
The purpose of this study was to investigate the effect of a combined heavy-resistance and running-speed training program performed in the same training session on strength, running velocity (RV), and vertical-jump performance (VJ) of soccer players. Thirty-five individuals were divided into 3 groups. The first group (n = 12, COM group) performed a combined resistance and speed training program at the same training session, and the second one (n = 11, STR group) performed the same resistance training without speed training. The third group was the control group (n = 12, CON group). Three jump tests were used for the evaluation of vertical jump performance: squat jump, countermovement jump, and drop jump. The 30-m dash and 1 repetition maximum (1RM) tests were used for running speed and strength evaluation, respectively. After training, both experimental groups significantly improved their 1RM of all tested exercises. Furthermore, the COM group performed significantly better than the STR and the CON groups in the 30-m dash, squat jump, and countermovement jump. It is concluded that the combined resistance and running-speed program provides better results than the conventional resistance training, regarding the power performance of soccer players.  相似文献   

15.
The purpose of this study was to compare anthropometric and athletic performance variables during the playing career of NCAA Division III college football players. Two hundred and eighty-nine college football players were assessed for height, body mass, body composition, 1-repetition-maximum (1RM) bench press, 1RM squat, vertical jump height (VJ), vertical jump peak, and vertical jump mean (VJMP) power, 40-yd sprint speed (40S), agility, and line drill (LD) over an 8-year period. All testing occurred at the beginning of summer training camp in each of the seasons studied. Data from all years of testing were combined. Players in their fourth and fifth (red-shirt year) seasons of competition were significantly (p < 0.05) heavier than first-year players. Significant increases in strength were seen during the course of the athletes' collegiate career (31.0% improvement in the 1RM bench press and 36.0% increase in squat strength). The VJ was significantly greater during the fourth year of competition compared to in the previous 3 years of play. Vertical jump peak and VJMP were significantly elevated from years 1 and 2 and were significantly higher during year 4 than during any previous season of competition. No significant changes in 40S or LD time were seen during the athletes playing career. Fatigue rate for the LD (fastest time/slowest time of 3 LD) significantly improved from the first (83.4 ± 6.4%) to second season (85.1 ± 6.5%) of competition. Fatigue rates in the fourth (88.3 ± 4.8%) and fifth (91.2 ± 5.2%) seasons were significantly greater than in any previous season. Strength and power performance improvements appear to occur throughout the football playing career of NCAA Division III athletes. However, the ability to significantly improve speed and agility may be limited.  相似文献   

16.
17.
Gordon R. Cumming  Rhoda Keynes 《CMAJ》1967,96(18):1262-1269
The Canadian Association for Health, Physical Education and Recreation fitness test (CAHPER test) composed of six items was compared to two laboratory tests of endurance fitness, physical working capacity at a minute pulse rate of 170 (PWC170) and maximum oxygen uptake (Vo2 max.) in over 500 Winnipeg school children of both sexes aged 6 to 17 years. CAHPER test results were similar to the national average published by CAHPER in a test booklet. Correlation coefficients (r) of Vo2 max. for boys with the CAHPER tests were: sit-ups .42, broad jump .69, shuttle run .50, arm hang .43, 50-yard dash .60, 300-yard run .65; for girls the r values were about half the values for the boys. Much of the correlation between CAHPER tests and Vo2 max. or PWC170 depended on the association of each test with body size. When multiple correlations were obtained including surface area as the first variable, the only significant factor correlating with the endurance tests was the arm hang; none of the other tests showed a significant correlation. “Physical fitness” is task-specific, so that a subject''s position in the scoring scale of a fitness test depends entirely upon the test. The CAHPER test for physical fitness shows little or no correlation with standard laboratory measures of endurance in average children.  相似文献   

18.
Initially reserved for rehabilitation programs, unstable surface training (UST) has recently grown in popularity in strength and conditioning and general exercise scenarios. Nonetheless, no studies to date have examined the effects of UST on performance in healthy, trained individuals. The purpose of this study was to determine the effects of 10 weeks of lower-body UST on performance in elite athletes. Nineteen healthy, trained members (ages 18-23 years) of a National Collegiate Athletic Association Division I collegiate men's soccer team participated. The experimental (US) group (n = 10) supplemented their normal conditioning program with lower-body exercises on inflatable rubber discs; the control (ST) group (n = 9) performed the same exercises on stable surfaces. Bounce drop jump (BDJ) and countermovement jump (CMJ) heights, 40- and 10-yard sprint times, and T-test (agility) times were assessed before and after the intervention. The ST group improved significantly on predicted power output on both the BDJ (3.2%) and CMJ (2.4%); no significant changes were noted in the US group. Both groups improved significantly on the 40- (US = -1.8%, ST = -3.9%) and 10-yard sprint times (US = -4.0%, ST = -7.6%). The ST group improved significantly more than the US group in 40-yard sprint time; a trend toward greater improvement in the ST group was apparent on the 10-yard sprint time. Both groups improved significantly (US = 2.9%, ST = -4.4%) on T-test performance; no statistically significant changes were apparent between the groups. These results indicate that UST using inflatable rubber discs attenuates performance improvements in healthy, trained athletes. Such implements have proved valuable in rehabilitation, but caution should be exercised when applying UST to athletic performance and general exercise scenarios.  相似文献   

19.
We assessed body composition (height, body mass, body mass index, body fat by densitometry, fat mass, fat-free mass, and lean/fat ratio) and performance (10- and 40-yd sprints, pro shuttle run, vertical jump, sit and reach, and bench press) in 77 National Collegiate Athletic Association Division III football players. Data were analyzed by position and playing status. Significant differences (p 相似文献   

20.
Despite impressive numbers of hockey participants, there is little research examining elite female ice hockey players. Therefore, the purpose of this study was to describe the physical characteristics of elite female ice hockey players who were trying out for the 2010 US Women's Ice Hockey team. Twenty-three women participated in the study and were evaluated for body mass (kilograms), height (centimeters), age (years) vertical jump (centimeters), standing long jump (centimeters), 1RM front squat (kilograms), front squat relative to body mass (percent), 1RM bench press (kilograms), bench press relative to body mass (percent), pull-ups, and body composition (percent body fat). The athletes in this sample were 24.7 years of age (SD = 3.1) and 169.7 cm tall (SD = 6.9); on average, they weighed 70.4 kg (SD = 7.1) and reported 15.8% body fat (SD = 1.9). Mean vertical jump height was 50.3 cm (SD = 5.7) and standing long jump was 214.8 cm (SD = 10.9). Mean 1RM for the upper body strength (bench press) was 65.3 kg (SD = 12.2) (95.1 ± 15.5% of body mass), and 1RM for lower body (front squat) was 88.6 kg (SD = 11.2) (127.7 ± 16.3% of body mass). This study is the first to report the physical characteristics of elite female ice hockey players from the USA. Data should assist strength and conditioning coaches in identifying talent, testing for strengths and weaknesses, comparing future teams to these indicators, and designing programs that will enhance the performance capabilities of female ice hockey athletes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号