首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The actin filament network immediately under the plasma membrane at the leading edge of rapidly moving cells consists of short, branched filaments, while those deeper in the cortex are much longer and are rarely branched. Nucleation by the Arp2/3 complex activated by membrane-bound factors (Rho-family GTPases and PIP(2)) is postulated to account for the formation of the branched network. Tropomyosin (TM) binds along the sides of filaments and protects them from severing proteins and pointed-end depolymerization in vitro. Here, we show that TM inhibits actin filament branching and nucleation by the Arp2/3 complex activated by WASp-WA. Tropomyosin increases the lag at the outset of polymerization, reduces the concentration of ends by 75%, and reduces the number of branches by approximately 50%. We conclude that TM bound to actin filaments inhibits their ability to act as secondary activators of nucleation by the Arp2/3 complex. This is the first example of inhibition of branching by an actin binding protein. We suggest that TM suppresses the nucleation of actin filament branches from actin filaments in the deep cortex of motile cells. Other abundant actin binding proteins may also locally regulate the branching nucleation by the Arp2/3 complex in cells.  相似文献   

2.
More than 60 highly conserved proteins appear sequentially at sites of clathrin-mediated endocytosis in yeast and mammals. The yeast Eps15-related proteins Pan1 and End3 and the CIN85-related protein Sla1 are known to interact with each other in vitro, and they all appear after endocytic-site initiation but before endocytic actin assembly, which facilitates membrane invagination/scission. Here we used live-cell imaging in parallel with genetics and biochemistry to explore comprehensively the dynamic interactions and functions of Pan1, End3, and Sla1. Our results indicate that Pan1 and End3 associate in a stable manner and appear at endocytic sites before Sla1. The End3 C-terminus is necessary and sufficient for its cortical localization via interaction with Pan1, whereas the End3 N-terminus plays a crucial role in Sla1 recruitment. We systematically examined the dynamic behaviors of endocytic proteins in cells in which Pan1 and End3 were simultaneously eliminated, using the auxin-inducible degron system. The results lead us to propose that endocytic-site initiation and actin assembly are separable processes linked by a Pan1/End3/Sla1 complex. Finally, our study provides mechanistic insights into how Pan1 and End3 function with Sla1 to coordinate cargo capture with actin assembly.  相似文献   

3.
The Arp2/3 complex greatly accelerates actin polymerization, which is thought to play a major role in cell motility by inducing membrane protrusions including ruffling movements. Membrane ruffles contain a variety of actin-binding proteins, which would modulate Arp2/3-dependent actin polymerization. However, their exact roles in actin polymerization remain to be established. Because caldesmon is present in membrane ruffles, as well as in stress fibers, it may alter Arp2/3-mediated actin polymerization. We have found that caldesmon greatly retards Arp2/3-induced actin polymerization. Kinetic analyses have revealed that caldesmon inhibits the nucleation process, whereas it does not largely reduce elongation. Caldesmon is found to inhibit binding of Arp2/3 to F-actin, which apparently reduces the ability of F-actin as a secondary activator of Arp2/3-mediated nucleation. We also have found that the inhibition of the binding between actin and caldesmon either by Ca(2+)/calmodulin or by phosphorylation with cdc2 kinase reverses the inhibitory effect of caldesmon on Arp2/3-induced actin polymerization. Our results suggest that caldesmon may be a key protein that modulates membrane ruffling and that this may involve changes in caldesmon phosphorylation and/or intracellular calcium concentrations during signal transduction.  相似文献   

4.
Activation of Arp2/3 complex-mediated actin polymerization by cortactin   总被引:1,自引:0,他引:1  
Cortactin, a filamentous actin (F-actin)-associated protein and prominent substrate of Src, is implicated in progression of breast tumours through gene amplification at chromosome 11q13. However, the function of cortactin remains obscure. Here we show that cortactin co-localizes with the Arp2/3 complex, a de novo actin nucleator, at dynamic particulate structures enriched with actin filaments. Cortactin binds directly to the Arp2/3 complex and activates it to promote nucleation of actin filaments. The interaction of cortactin with the Arp2/3 complex occurs at an amino-terminal domain that is rich in acidic amino acids. Mutations in a conserved amino-acid sequence of DDW abolish both the interaction with the Arp2/3 complex and complex activation. The N-terminal domain is not only essential but also sufficient to target cortactin to actin-enriched patches within cells. Interestingly, the ability of cortactin to activate the Arp2/3 complex depends on an activity for F-actin binding, which is almost 20-fold higher than that of the Arp2/3 complex. Our data indicate a new mechanism for activation of actin polymerization involving an enhanced interaction between the Arp2/3 complex and actin filaments.  相似文献   

5.
Protein complexes regulating Arp2/3-mediated actin assembly   总被引:12,自引:0,他引:12  
Key steps in regulating actin dynamics are the de novo nucleation and elongation of actin filaments, which can be catalysed by a limited number of proteins and protein complexes. Among these, Arp2/3 complex and formins are the best studied. Arp2/3-complex activity is controlled through signalling-dependent association with nucleation-promoting factors, such as the WASP/WAVE family proteins. A common theme for these molecules, which is well established for WAVEs but is only just beginning to emerge for WASPs, is that they act as coincident detectors of a variety of signalling pathways through the formation of large multi-molecular complexes.  相似文献   

6.
In both yeast and mammals, endocytic internalization is accompanied by a transient burst of actin polymerization. The yeast protein kinases Prk1p and Ark1p, which are related to the mammalian proteins GAK and AAK1, are key regulators of this process. However, the molecular mechanism(s) by which they regulate actin assembly at endocytic sites have not yet been determined. The Eps15-like yeast protein Pan1p is a Prk1p substrate that is essential for endocytic internalization and for proper actin organization. Pan1p is an Arp2/3 activator and here we show that this activity is dependent on F-actin binding. Mutation of all 15 Prk1p-targeted threonines in Pan1p to alanines mimicked the ark1Delta prk1Delta phenotype, demonstrating that Pan1p is a key Prk1p target in vivo. Moreover, phosphorylation by Prk1p inhibited the ability of Pan1p to bind to F-actin and to activate the Arp2/3 complex, thereby identifying the endocytic phosphoregulation mechanism of Prk1p. We conclude that Prk1p phosphorylation of Pan1p shuts off Arp2/3-mediated actin polymerization on endocytic vesicles, allowing them to fuse with endosomes.  相似文献   

7.
The Arp2/3 complex is essential for actin assembly and motility in many cell processes, and a large number of proteins have been found to bind and regulate it in vitro. A critical challenge is to understand the actions of these proteins in cells, especially in settings where multiple regulators are present. In a systematic study of the sequential multicomponent actin assembly processes that accompany endocytosis in yeast, we examined and compared the roles of WASp, two type-I myosins, and two other Arp2/3 activators, along with that of coronin, which is a proposed inhibitor of Arp2/3. Quantitative analysis of high-speed fluorescence imaging revealed individual functions for the regulators, manifested in part by novel phenotypes. We conclude that Arp2/3 regulators have distinct and overlapping roles in the processes of actin assembly that drive endocytosis in yeast. The formation of the endocytic actin patch, the creation of the endocytic vesicle, and the movement of the vesicle into the cytoplasm display distinct dependencies on different Arp2/3 regulators. Knowledge of these roles provides insight into the in vivo relevance of the dendritic nucleation model for actin assembly.  相似文献   

8.
The Arp2/3 complex creates filament branches leading to an enhancement in the rate of actin polymerization. Work with Arp complexes from different sources indicated that it was inactive by itself, required an activating factor such as the Wiskott-Aldrich syndrome protein (WASP), and might exhibit a preference for ATP or ADP-P(i) actin. However, with yeast actin, P(i) release is almost concurrent with polymerization, eliminating the presence of an ADP-P(i) cap. We thus investigated the ability of the yeast Arp2/3 complex (yArp2/3) to facilitate yeast actin polymerization in the presence and absence of the Arp2/3-activating factor Las17p WA. yArp2/3 significantly accelerates yeast actin but not muscle actin polymerization in the absence of Las17p WA. The addition of Las17p WA further enhances yeast actin polymerization by yArp2/3 and allows the complex to now assist muscle actin polymerization. This actin isoform difference is not observed with bovine Arp2/3 complex, because the neural WASP VCA fragment is required for polymerization of both actins. Observation of individual branching filaments showed that Las17p WA increased the persistence of filament branches. Compared with wild type actin, the V159N mutant actin, proposed to be more ATP-like in behavior, exhibited an enhanced rate of polymerization in the presence of the yArp2/3 complex. yArp2/3 caused a significant rate of P(i) release prior to observation of an increase in filament mass but while branched structures were present. Thus, yeast F-actin can serve as a primary yArp2/3-activating factor, indicating that a newly formed yeast actin filament has a topology, unlike that of muscle actin, that is recognized specifically by yArp2/3.  相似文献   

9.
Polymerization and organization of actin filaments into complex superstructures is indispensable for structure and function of neuronal networks. We here report that knock down of the F-actin-binding protein Abp1, which is important for endocytosis and synaptic organization, results in changes in axon development virtually identical to Arp2/3 complex inhibition, i.e., a selective increase of axon length. Our in vitro and in vivo experiments demonstrate that Abp1 interacts directly with N-WASP, an activator of the Arp2/3 complex, and releases the autoinhibition of N-WASP in cooperation with Cdc42 and thereby promotes N-WASP-triggered Arp2/3 complex-mediated actin polymerization. In line with our mechanistical studies and the colocalization of Abp1, N-WASP and Arp2/3 at sites of actin polymerization in neurons, we reveal an essential role of Abp1 and its cooperativity with Cdc42 in N-WASP-induced rearrangements of the neuronal cytoskeleton. We furthermore show that introduction of N-WASP mutants lacking the ability to bind Abp1 or Cdc42, Arp2/3 complex inhibition, Abp1 knock down, N-WASP knock down and Arp3 knock down, all cause identical neuromorphological phenotypes. Our data thus strongly suggest that these proteins and their complex formation are important for cytoskeletal processes underlying neuronal network formation.  相似文献   

10.
11.
We have investigated the role of the Arp2/3 complex in Dictyostelium cell chemotaxis towards cyclic-AMP and in the actin polymerization that is triggered by this chemoattractant. We confirm that the Arp2/3 complex is recruited to the cell perimeter, or into a pseudopod, after cyclic-AMP stimulation and that this is coincident with actin polymerization. This recruitment is inhibited when actin polymerization is blocked using latrunculin suggesting that the complex binds to pre-existing actin filaments, rather than to a membrane associated signaling complex. We show genetically that an intact Arp2/3 complex is essential in Dictyostelium and have produced partially active mutants in two of its subunits. In these mutants both phases of actin polymerization in response to cyclic-AMP are greatly reduced. One mutant projects pseudopodia more slowly than wild type and has impaired chemotaxis, together with slower movement. The second mutant chemotaxes poorly due to an adhesion defect, suggesting that the Arp2/3 complex plays a crucial part in adhering cells to the substratum as they move. We conclude that the Arp2/3 complex largely mediates the actin polymerization response to chemotactic stimulation and contributes to cell motility, pseudopod extension and adhesion in Dictyostelium chemotaxis.  相似文献   

12.
The Rac-specific GEF (guanine-nucleotide exchange factor) Tiam1 (T-lymphoma invasion and metastasis 1) regulates migration, cell-matrix and cell-cell adhesion by modulating the actin cytoskeleton through the GTPase, Rac1. Using yeast two-hybrid screening and biochemical assays, we found that Tiam1 interacts with the p21-Arc [Arp (actin-related protein) complex] subunit of the Arp2/3 complex. Association occurred through the N-terminal pleckstrin homology domain and the adjacent coiled-coil region of Tiam1. As a result, Tiam1 co-localizes with the Arp2/3 complex at sites of actin polymerization, such as epithelial cell-cell contacts and membrane ruffles. Deletion of the p21-Arc-binding domain in Tiam1 impairs its subcellular localization and capacity to activate Rac1, suggesting that binding to the Arp2/3 complex is important for the function of Tiam1. Indeed, blocking Arp2/3 activation with a WASP (Wiskott-Aldrich syndrome protein) inhibitor leads to subcellular relocalization of Tiam1 and decreased Rac activation. Conversely, functionally active Tiam1, but not a GEF-deficient mutant, promotes activation of the Arp2/3 complex and its association with cytoskeletal components, indicating that Tiam1 and Arp2/3 are mutually dependent for their correct localization and signalling. Our data suggests a model in which the Arp2/3 complex acts as a scaffold to localize Tiam1, and thereby Rac activity, which are both required for activation of the Arp2/3 complex and further Arp2/3 recruitment. This 'self-amplifying' signalling module involving Tiam1, Rac and the Arp2/3 complex could thus drive actin polymerization at specific sites in cells that are required for dynamic morphological changes.  相似文献   

13.
The mechanisms regulating the disassembly of branched actin networks formed by the Arp2/3 complex still remain to be fully elucidated. In addition, the impact of Arp3 isoforms on the properties of Arp2/3 are also unexplored. We now demonstrate that Arp3 and Arp3B isocomplexes promote actin assembly equally efficiently but generate branched actin networks with different disassembly rates. Arp3B dissociates significantly faster than Arp3 from the network, and its depletion increases actin stability. This difference is due to the oxidation of Arp3B, but not Arp3, by the methionine monooxygenase MICAL2, which is recruited to the actin network by coronin 1C. Substitution of Arp3B Met293 by threonine, the corresponding residue in Arp3, increases actin network stability. Conversely, replacing Arp3 Thr293 with glutamine to mimic Met oxidation promotes disassembly. The ability of MICAL2 to enhance network disassembly also depends on cortactin. Our observations demonstrate that coronin 1C, cortactin, and MICAL2 act together to promote disassembly of branched actin networks by oxidizing Arp3B-containing Arp2/3 complexes.  相似文献   

14.
15.
PICK1 interacts with ABP/GRIP to regulate AMPA receptor trafficking   总被引:6,自引:0,他引:6  
Lu W  Ziff EB 《Neuron》2005,47(3):407-421
PICK1 and ABP/GRIP bind to the AMPA receptor (AMPAR) GluR2 subunit C terminus. Transfer of the receptor from ABP/GRIP to PICK1, facilitated by GluR2 S880 phosphorylation, may initiate receptor trafficking. Here we report protein interactions that regulate these steps. The PICK1 BAR domain interacts intermolecularly with the ABP/GRIP linker II region and intramolecularly with the PICK1 PDZ domain. Binding of PKCalpha or GluR2 to the PICK1 PDZ domain disrupts the intramolecular interaction and facilitates the PICK1 BAR domain association with ABP/GRIP. Interference with the PICK1-ABP/GRIP interaction impairs S880 phosphorylation of GluR2 by PKC and decreases the constitutive surface expression of GluR2, the NMDA-induced endocytosis of GluR2, and recycling of internalized GluR2. We suggest that the PICK1 interaction with ABP/GRIP is a critical step in controlling GluR2 trafficking.  相似文献   

16.
α-Amino-3-hydroxy-5-methyl-isoxazole-4-propionic acid receptors (AMPARs) are the primary mediators of excitatory synaptic transmission in the brain. Alterations in AMPAR localization and turnover have been considered critical mechanisms underpinning synaptic plasticity and higher brain functions, but the molecular processes that control AMPAR trafficking and stability are still not fully understood. Here, we report that mammalian AMPARs are subject to ubiquitination in neurons and in transfected heterologous cells. Ubiquitination facilitates AMPAR endocytosis, leading to a reduction in AMPAR cell-surface localization and total receptor abundance. Mutation of lysine residues to arginine residues at the glutamate receptor subunit 1 (GluA1) C-terminus dramatically reduces GluA1 ubiquitination and abolishes ubiquitin-dependent GluA1 internalization and degradation, indicating that the lysine residues, particularly K868, are sites of ubiquitination. We also find that the E3 ligase neural precursor cell expressed, developmentally down-regulated 4 (Nedd4) is enriched in synaptosomes and co-localizes and associates with AMPARs in neurons. Nedd4 expression leads to AMPAR ubiquitination, leading to reduced AMPAR surface expression and suppressed excitatory synaptic transmission. Conversely, knockdown of Nedd4 by specific siRNAs abolishes AMPAR ubiquitination. These data indicate that Nedd4 is the E3 ubiquitin ligase responsible for AMPAR ubiquitination, a modification that regulates multiple aspects of AMPAR molecular biology including trafficking, localization and stability.  相似文献   

17.
Activity-dependent remodelling of dendritic spines is essential for neural circuit development and synaptic plasticity, but the precise molecular mechanisms that regulate this process are unclear. Activators of Arp2/3-mediated actin polymerisation are required for spine enlargement; however, during long-term depression (LTD), spines shrink via actin depolymerisation and Arp2/3 inhibitors in this process have not yet been identified. Here, we show that PICK1 regulates spine size in hippocampal neurons via inhibition of the Arp2/3 complex. PICK1 knockdown increases spine size, whereas PICK1 overexpression reduces spine size. NMDA receptor activation results in spine shrinkage, which is blocked by PICK1 knockdown or overexpression of a PICK1 mutant that cannot bind Arp2/3. Furthermore, we show that PICK1-Arp2/3 interactions are required for functional hippocampal LTD. This work demonstrates that PICK1 is a novel regulator of spine dynamics. Via Arp2/3 inhibition, PICK1 has complementary yet distinct roles during LTD to regulate AMPA receptor trafficking and spine size, and therefore functions as a crucial factor in both structural and functional plasticity.  相似文献   

18.
BACKGROUND: Actin filaments polymerize in vivo primarily from their fast-growing barbed ends. In cells and extracts, GTPgammaS and Rho-family GTPases, including Cdc42, stimulate barbed-end actin polymerization; however, the mechanism responsible for the initiation of polymerization is unknown. There are three formal possibilities for how free barbed ends may be generated in response to cellular signals: uncapping of existing filaments; severing of existing filaments; or de novo nucleation. The Arp2/3 complex localizes to regions of dynamic actin polymerization, including the leading edges of motile cells and motile actin patches in yeast, and in vitro it nucleates the formation of actin filaments with free barbed ends. Here, we investigated actin polymerization in soluble extracts of Acanthamoeba. RESULTS: Addition of actin filaments with free barbed ends to Acanthamoeba extracts is sufficient to induce polymerization of endogenous actin. Addition of activated Cdc42 or activation of Rho-family GTPases in these extracts by the non-hydrolyzable GTP analog GTPgammaS stimulated barbed-end polymerization, whereas immunodepletion of Arp2 or sequestration of Arp2 using solution-binding antibodies blocked Rho-family GTPase-induced actin polymerization. CONCLUSIONS: For this system, we conclude that the accessibility of free barbed ends regulates actin polymerization, that Rho-family GTPases stimulate polymerization catalytically by de novo nucleation of free barbed ends and that the primary nucleation factor in this pathway is the Arp2/3 complex.  相似文献   

19.
The ARP2/3 complex promotes branched actin networks, but the importance of specific subunit isoforms is unclear. In this issue, Galloni, Carra, et al. (2021. J. Cell Biol. https://doi.org/10.1083/jcb.202102043) show that MICAL2 mediates methionine oxidation of ARP3B, thus destabilizing ARP2/3 complexes and leading to disassembly of branched actin filaments.

Remodeling of branched actin networks enables cell protrusion and sensing of the environment and is essential for cell motility. Migrating cells such as fibroblasts, immune cells, and metastatic cancer cells rely on actin dynamics to generate pushing, pulling, and squeezing forces to propel themselves. Therefore, studying the processes regulating assembly and disassembly of actin filaments is key to understanding cell locomotion in health and disease. One of the most important catalyzers of actin assembly is the Arp2/3 complex, which drives lamellipodia formation and cell protrusion. Arp2/3-generated actin networks are also important for endocytic trafficking, membrane remodeling during vesicle internalization, cargo sorting, and membrane excision (1). The seven-protein ARP2/3 complex contains two unconventional actin-related proteins (ARP2 and ARP3) and five additional subunits (ARPC1–5). Mammals express two isoforms of three of the subunits (ARP3/ARP3B, ARPC1A/ARPC1B, and ARPC5/ARPC5L), resulting in functional diversity depending on the specific isoforms incorporated into the ARP2/3 complex; however, despite some intriguing roles described in muscle development (2) and platelet function (3), little is known about the biological significance of these isoforms.The nucleation activity of ARP2/3 complex is regulated at multiple levels to ensure that new actin generation is spatially and temporally controlled. Activation is controlled by Wiskott Aldrich Syndrome Protein (WASP)–family proteins, which are themselves part of multi-protein complex machines (4). WASP-family protein complexes detect multiple inputs such as membrane phospholipids, protein–protein interactions, or post-translational modifications, and act as signaling hubs to regulate branched actin nucleation. Other proteins, such as cortactin or coronin, also modulate branch stability in an antagonistic manner (5). ARP2/3 can be post-translationally modified by phosphorylation and interaction with negative regulators, whereas actin itself is regulated by targeted oxidation of methionine residues (6). How these feedback loops that control ARP2/3 activity are coordinated with cell function is an intense area of research.Molecule interacting with CasL (MICAL) proteins have emerged as important mediators of targeted protein oxidation (6). MICAL proteins (MICAL1–3) are flavin adenine dinucleotide–binding monooxygenases capable of oxidizing target proteins (including actin), either directly or through generation of diffusible H2O2, which in turn oxidizes proteins in close proximity. Actin oxidation occurs on two methionine residues (Met44 and Met47), resulting in F-actin disassembly and increased cofilin-mediated F-actin severing. Although actin is the best characterized MICAL substrate, there remains the intriguing possibility of the existence of additional targets that regulate cytoskeleton dynamics.In this issue, Galloni, Carra, et al. evaluated the ability of ARP2/3 complexes, containing either ARP3 or the ARP3B isoform (i.e., isocomplexes), to promote actin assembly, and determined isoform-specific differences in their activity and molecular regulation (7). As a model system, the authors used HeLa cells infected with vaccinia virus to study actin branching, given that this virus induces actin tail nucleation in the host cells. They noticed that in cells lacking ARP3, the localization of GFP-ARP3 or GFP-ARP3B to actin tails was comparable, and both isoforms were similarly incorporated into ARP2/3 complexes (Fig. 1). However, the length of the actin tails in ARP3B-expressing cells was shorter than in ARP3-expressing counterparts. Given that ARP3 and ARP3B isocomplexes were equivalent in their ability to induce actin polymerization in vitro, these data pointed to a faster disassembly rate as the potential cause underlying shorter actin tails in ARP3B-expressing cells. Indeed, by tracking photoactivatable actin to study its dynamics, the researchers confirmed that the rate of filament disassembly was faster in ARP3B-expressing cells.Open in a separate windowFigure 1.Vaccinia virus surfs on the outside of the cell, forming an actin tail in the cytoplasm that aids its propulsion. Arp2/3 complex is involved in initiating the branched actin structures and shows slow dissociation from the branches when it is stabilized by the linker protein cortactin. When an Arp2/3 complex containing the ARP3B isoform of ARP3 forms, the dissociation is enhanced, as ARP3B is subject to oxidation by MICAL2, which is recruited to branches by coronin, causing cortactin displacement and rapid branch dissociating leading to shorter actin tails.To identify the molecular basis for the differences between ARP3 and ARP3B, the authors tested a series of ARP3 and ARP3B chimeric proteins, which revealed the importance of ARP3B amino acids 281–418 in mediating the functional differences with ARP3. In particular, Met293 was essential for ARP3B to generate short actin tails. Given that MICAL enzymes promote actin filament disassembly through oxidation of actin Met44 and Met47, Galloni, Carra, et al. decided to investigate the possibility that MICAL-induced oxidation of Met293 in ARP3B inhibits ARP3B activity. Fluorescently tagged MICAL2, but not MICAL1, was recruited to vaccinia-induced actin tails at a position relatively distant from the virus itself, similar to the actin-binding protein coronin (8). Down-regulation of MICAL2, but not MICAL1, increased actin tail stability and suppressed the short actin tail phenotype induced by ARP3B overexpression. Using an antibody raised against oxidized Met293, the researchers confirmed that ARP3B oxidation was reduced following MICAL2 knockdown. Recruitment of MICAL2 to actin tails was dependent on coronin 1C expression, and silencing of coronin 1C resulted in actin filament stabilization and reversal of ARP3B-induced actin tail shortening comparable to MICAL2 knockdown. Thus, coronin 1C recruitment of MICAL2 results in ARP3B oxidation on Met293, leading to dissociation of ARP2/3B isocomplexes and consequent actin networks destabilization.Interestingly, the authors noted that the actin nucleation promoting factor cortactin, which stabilizes ARP2/3-mediated branch points along actin filaments, was required for actin tail destabilization in ARP3B overexpressing cells but was not necessary for localization of coronin 1C or MICAL2 to actin tails. One possibility is that cortactin supports local MICAL2-mediated oxidation of ARP3B at branch points to induce filament de-branching, rather than bulk actin filament depolymerization that would result from direct actin oxidation. Since MICAL proteins are directed to specific cytoskeleton locations by interacting with Myosin 5A (9) and Myosin 15 (10), the consequences of MICAL activity on actin cytoskeleton organization and function may be fine-tuned by specific MICAL subcellular localization and interacting partners.Given that actin binds directly to the catalytic monooxygenase and calponin homology domains of MICAL proteins to increase enzyme activity and promote methionine oxidation, it is not entirely surprising that the actin-related ARP3B protein can be oxidized by MICAL2. However, the location of Met293 in ARP3B is not analogous to the Met44 or Met47 residues of actin, which raises questions regarding the mechanism of ARP3B oxidation by MICAL2. Structural modeling of the MICAL3–actin complex positions the actin loop containing Met44 and Met47 near the enzyme active site (11). ARP3B may interact with MICAL2 differently to bring Met293 close to the active site for direct oxidation, or H2O2 produced by MICAL2 might diffuse and oxidize highly concentrated nearby proteins. If this second possibility were true, then it is also possible that additional protein targets (e.g., coronin 1C, cortactin, additional ARP2/3 subunits) might also be oxidized on Met or Cys residues. Since the effects of MICAL1 on actin are counteracted via reduction of the oxidized Met residues by the sulfoxide reductase enzyme SelR (12), it remains to be determined if ARP3B can be similarly reactivated.  相似文献   

20.
A spectroscopic assay using pyrene-labeled fission yeast Arp2/3 complex revealed that the complex binds to and dissociates from actin filaments extremely slowly with or without the nucleation-promoting factor fission yeast Wsp1-VCA. Wsp1-VCA binds both Arp2/3 complex and actin monomers with high affinity. These two ligands have only modest impacts on the interaction of the other ligand with VCA. Simulations of a mathematical model based on the kinetic parameters determined in this study and elsewhere account for the full time course of actin polymerization in the presence of Arp2/3 complex and Wsp1-VCA and show that an activation step, postulated to follow binding of a ternary complex of Arp2/3 complex, a bound nucleation-promoting factor, and an actin monomer to an actin filament, has a rate constant at least 0.15 s(-1). Kinetic parameters determined in this study constrain the process of actin filament branch formation during cellular motility to one main pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号