首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The subclass distribution of human IgG rheumatoid factor   总被引:3,自引:0,他引:3  
The subclass distribution of IgG rheumatoid factor (RF) was determined by a sensitive ELISA assay in sera from patients with rheumatoid arthritis and from normal controls. In both instances, the most important subclasses were IgG1 and IgG4. The IgG4 RF was directed against the Fc region of IgG, and recognized human as well as rabbit IgG. Although human IgG4 myeloma proteins bound to rabbit IgG better than did myelomas of other IgG subclasses, the IgG4 RF activity in rheumatoid sera showed an additional specificity, because the fraction of IgG4 RF/total IgG4 for rheumatoid arthritis sera was far greater than for myelomas. This inference was supported by the observation that there was persistent, albeit diminished, IgG RF activity in pepsin-digested, RF-containing sera (but not myeloma proteins), indicating that a critical component of IgG4 RF activity was contained within the Fab region of the IgG4 molecule. The finding of large quantities of IgG4 RF was not due to a bias of the assay, because the preponderance of IgG4 did not extend to the subclass distribution of antibodies directed against other antigens. The demonstration of an important role for IgG4 as a RF is of special interest because of the relative inability of this subclass to fix complement or to bind to Fc receptors, and because of its potential role as a mediator of increased vascular permeability.  相似文献   

2.
Serum samples from 26 normal volunteers were evaluated by isotype-specific ELISA for the presence of IgG and IgM antibodies directed at IgA. Although there were wide variations in antibody levels, anti-IgA antibodies of both isotypes were found in all individuals tested. The anti-IgA activity was detected against a variety of polymeric and monomeric IgA1 and IgA2 myeloma proteins containing both kappa and lambda light chains. By using Fab and Fc fragments generated by incubation of an IgA1 myeloma protein with IgA1 protease, it was shown that the anti-IgA activity was specific for the Fab portion of the IgA molecule. It was also demonstrated that the serum of two individuals contained both IgG and IgM activity directed at autologous affinity-purified IgA. IgM antibody levels against both whole IgA and Fab of IgA were significantly higher than IgG antibody levels. Cells producing anti-IgA antibodies of both isotypes were detected in lipopolysaccharide-stimulated human spleen.  相似文献   

3.
Intact rabbit immunoglobulin G molecules (IgGs) and their papain or pepsin fragments were radio-iodinated and injected into HeLa cells. Whole IgGs, Fab2, and Fc fragments were degraded with half-lives of 60- 90 h, whereas half-lives of Fab fragments were 110 h. These results indicate that proteolytic cleavage in the hinge region of the IgG molecule is not the rate-limiting step in its intracellular degradation. The hingeless human myeloma protein, Mcg, was degraded at the same rate as bulk human IgG, providing further evidence that the proteolytically susceptible hinge region is not important for intracellular degradation of IgG molecules. SDS acrylamide gel analysis of injected rabbit IgG molecules revealed that heavy and light chains were degraded at the same rate. Injected rabbit IgGs and rabbit IgG fragments were also examined on isoelectric focusing gels. Fab, Fab2, and Fc fragments were degraded without any correlation with respect to isoelectric point. Positively charged rabbit IgGs disappeared more rapidly than their negative counterparts, contrary to the trend reported for normal intracellular proteins. The isoelectric points of two mouse monoclonal antibodies were essentially unchanged after injection into HeLa cells, suggesting that the altered isoelectric profile observed for intact rabbit IgG resulted from degradation and not protein modification. The intracellular distributions of IgG fragments and intact rabbit IgG molecules were determined by autoradiography of thin sections through injected cells. Intact IgG molecules were excluded from HeLa nuclei whereas both Fab and Fc fragments readily entered them. Thus, for some proteins, entry into the nuclear compartment is determined primarily by size.  相似文献   

4.
Rheumatoid factors (RF) are autoantibodies that recognize epitopes in the Fc region of immunoglobulin (Ig) G and that correlate with the clinical severity of rheumatoid arthritis (RA). Here we report the X-ray crystallographic structure, at 3 A resolution, of a complex between the Fc region of human IgG1 and the Fab fragment of a monoclonal IgM RF (RF61), derived from an RA patient and with a relatively high affinity for IgG Fc. In the complex, two Fab fragments bind to each Fc at epitopes close to the C terminus, and each epitope comprises residues from both Cgamma3 domains. A central role in the unusually hydrophilic epitope is played by the side-chain of Arg355, accounting for the subclass specificity of RF61, which recognizes IgG1,-2, and -3 in preference to IgG4, in which the corresponding residue is Gln355. Compared with a previously determined complex of a lower affinity RF (RF-AN) bound to IgG4 Fc, in which only residues at the very edge of the antibody combining site were involved in binding, the epitope bound by RF61 is centered in classic fashion on the axis of the V(H):V(L) beta-barrel. The complementarity determining region-H3 loop plays a key role, forming a pocket in which Arg355 is bound by two salt-bridges. The antibody contacts also involve two somatically mutated V(H) residues, reinforcing the suggestion of a process of antigen-driven maturation and selection for IgG Fc during the generation of this RF autoantibody.  相似文献   

5.
Previous work has shown that IgG rheumatoid factors (RF) bind to the C gamma 2-C gamma 3 interface region of human IgG in the same area that binds staphylococcal protein A (SPA). Group A, C, and G strains of Streptococci possess Fc receptors that bind to IgG but not to fragments containing only the C gamma 2 or C gamma 3 domains. This work describes the binding site location on human IgG for the binding of the isolated Fc receptor from the T15 strain of a Group A streptococcus and its relationship to the site that binds SPA and the IgG RF. The isolated T15 Fc receptor (T15) with a molecular mass of 29.5 kD inhibited the binding of IgG RF to IgG. The binding of T15 itself to IgG was strongly inhibited by SPA (42.0 kD) and its monovalent fragment D (7 kD). Human IgG fragments consisting of the C gamma 3 domains did not inhibit the binding of T15 to IgG, whereas those with both domains were effective inhibitors. T15 did not bind to rabbit IgG fragments consisting of either the C gamma 2 or C gamma 3 domains, but did bind to those with both domains. An IgG3 myeloma protein was a poor inhibitor and has been shown to bind poorly to the IgG RF. Most IgG3 myeloma proteins did not bind to SPA. The substitution of Arg and Phe for His 435 and Tyr 436 is responsible for the poor binding of IgG3 to SPA and to the IgG RF. Chemical modification of His or Tyr on IgG reduced its ability to inhibit the binding of T15 to IgG. Reversal of the chemical modifications with hydroxylamine resulted in near complete restoration of inhibitory capacity. This information, collectively, coupled with the known positions in space of the His and Tyr residues in the C gamma 2-C gamma 3 interface region, verified that both His 435 and Tyr 436, and possibly His 310 and 433, are involved. These residues are also involved in binding SPA and the IgG RF. These data therefore indicate that the T15 Group A Streptococcal Fc receptor binds to the same location on the Fc of IgG as SPA and the IgG RF. The biologic relevance of these similarities between bacterial cell wall Fc receptors and IgG RF are not yet apparent, but suggest that RF could bear the internal image of these bacterial structures.  相似文献   

6.
Asparagine-linked sugar chains were quantitatively released as oligosaccharides from human IgG2 and IgG4 myeloma proteins by hydrazinolysis followed by N-acetylation and NaB3H4 reduction. Each oligosaccharide was isolated by serial lectin column chromatography. Study of their structures by sequential exoglycosidase digestion and methylation analysis, revealed that all of them were of the bi-antennary complex-type containing Man alpha 1-6(+/- GlcNAc beta 1-4)(Man alpha 1-3)Man beta 1-4GlcNAc beta 1-4(+/- Fuc alpha 1-6)GlcNAc as core structures, and GlcNAc beta 1-, Gal beta 1-4GlcNAc beta 1- and Sia alpha 2-6Gal beta 1- in their outer chain moieties. However, the molar ratio of each oligosaccharide was different in each IgG sample, indicating that clonal variation is included in the sugar chain moieties of IgG molecules. One of the IgG2 contained four asparagine-linked sugar chains in one molecule, two on the Fc fragment and the remainder on the Fab fragment. The sugar chains in the Fc fragment contained much less galactose as compared with the Fab fragment.  相似文献   

7.
The structure of six human myeloma proteins: IgG1(Bal), IgG2(Klu), IgG3(Bak), IgG3(Het), IgG4(Kov) and IgG4(Pol), was studied in solution using small-angle X-ray scattering and hydrodynamic methods. For IgG1(Bal) and IgG3(Het) the experimental data, including radius of gyration (Rg degree), radii of gyration of the cross-section (Rq1, Rq2), intrinsic viscosity [eta], sedimentation coefficient (S degree 20,w) and molecular mass, were interpreted in terms of structural models based on the Fab and Fc conformations, observed in crystal, by varying the relative positions of the Fab and Fc parts, i.e. their relative angles and distances. The values Rg degree = (6.00 +/- 0.05) nm, S degree 20,w = (6.81 +/- 0.10) S and [eta] = 0.0062 +/- 0.0005 cm3/mg obtained for IgG1(Bal) are compatible with a planar model in which the angle between the Fab arms is about 120 degrees. For IgG3(Het) the following data were obtained: Rg degree = (4.90 +/- 0.05) nm, S degree 20,w = (6.32 +/- 0.01) S and [eta] = (0.0065 +/- 0.0005) cm3/mg. The apparent contradiction between the higher molecular mass and lower Rg degree and S degree 20,w values for IgG3(Het) in comparison to IgG1(Bal) can be resolved by proposing a 'non-planar' (tetrahedral) molecular shape, in which the long hinge peptide is in a folded conformation and the two Fab and Fc parts are in a closely packed arrangement. In this model the angle between the two Fab arms is about 90 degrees, in the average position. The X-ray scattering and hydrodynamic behaviour of the IgG2 and IgG4 types of antibodies appeared to be similar to IgG1(Bal). The parameters of the two IgG3 proteins are similar while they are different to the others.  相似文献   

8.
Circulating autoimmune complexes of IgM rheumatoid factors (RF) bound to the Fc portions of normal, polyclonal IgG antibodies are frequently present in humans with rheumatoid arthritis (RA). The sweet tasting methyl ester of L-Asp-L-Phe (aspartame or APM) was found to relieve pain and improve joint mobility in subjects with osteo- and mixed osteo/rheumatoid arthritis [Edmundson, A. B. and Manion, C. V. (1998). Clin. Pharmac. Ther. 63, 580-593]. These clinical observations prompted the testing of the inhibition by APM of the binding interactions of human IgM RFs with IgG Fc regions. The propensity of APM to inhibit IgM RF binding was assessed by competitive enzyme immunoassays with solid-phase human IgG. Ten RA serum samples and three purified monoclonal cryoglobulins, all of which had RF activity, were tested in this system. We found that the presence of APM significantly reduced the binding of IgM RFs. The inhibitory propensity of APM with monoclonal RF cryoglobulins was increased by the addition of CaCl(2) to the binding buffer. Similar inhibition of the binding of RA derived RFs to IgG was observed for Asp-Phe and its amidated derivative, indicating that the methyl ester is not required for APM's interaction with IgM antibodies. A human (Mez) IgM known to bind octameric peptides derived from the Fc portion of a human IgG(1) antibody was tested for binding of dipeptides by the Pepscan method of combinatorial chemistry. The relative binding constants of Asp-Phe and Phe-Asp were ranked among the highest values for 400 possible combinations of the 20 most common amino acids. Possible blocking interactions of APM were explored by computer-assisted docking studies with the model of a complex of an RF Fab with the Fc of a human IgG(4) antibody. Modeling of ternary immune complexes revealed a few key residues, which could act as molecular recognition sites for APM. A structural hypothesis is presented to explain the observed interference with RF reactivity by APM. Extrapolations of the current results suggest that APM may inhibit the binding of IgG in a substantial proportion of IgM RFs. Interference of RF reactivity, especially in RA patients, may alleviate the pain and immobility resulting from chronic inflammation of the joints.  相似文献   

9.
The effect of plasma proteins (and IgG fragments) and sialic acid content of erythrocytes on the aggregation of human erythrocytes was quantitatively examined by using a rheoscope combined with a television image analyser and a computer. (1) The velocity of erythrocyte aggregation by plasma proteins was increased with increasing in their molecular weight, i.e., IgG less than IgA less than fibrinogen less than IgM. F(ab')2. Fab and Fc could not induce the aggregation. (2) The aggregation induced by fibrinogen was accelerated by IgG and its peptic fragment, F(ab')2, but was unaffected by the plasmic fragments, Fab and Fc. The accelerating effect by IgG and F(ab')2 was inhibited by Fab and Fc. (3) The aggregation of erythrocytes was accelerated by decreasing the sialic acid content (due to the reduction of the electrostatic repulsive force among erythrocytes), and the effect of desialylation on the IgG-induced aggregation was greater than that of desialylation on the fibrinogen-induced aggregation. (4) The roles of plasma proteins and of sialic acid content of erythrocytes on the aggregation of erythrocytes were discussed.  相似文献   

10.
Conformational studies on Fab(t) and Fc(t) (normal and myeloma) have been carried out by circular dichroism, difference spectra, sedimentation, and viscosity measurements. Both Fab(t) and Fc(t) were largely unfolded in acid (pH 2.1) and alkali (pH 11.7), and the unfolding was greater in alkali than in acid for Fab(t). However, for Fc(t) the circular dichroism spectral change was slightly higher in acid (pH 2.1) than in alkali (pH 11.7). It was also noted that the disorganizations were not complete under these conditions. Similar types of disorganizations were observed in heat denatured Fab(t) and Fc(t). Difference spectral studies demonstrated the presence of a significant number of buried tyrosine and tryptophan residues in both fragments, and a large proportion of the residues became exposed on acid denaturation. The results led us to conclude that both Fab(t) and Fc(t) may be characterized by structures of different stabilities. There seem to be small stable structured regions containing some of the β structures while the other portions are more susceptible to denaturation. Also, there are regions in these proteins which are rich in hydrophobic interactions. Sodium dodecyl sulfate refolded both Fab(t) and Fc(t) into partial helical structures, although the accessibility and rotational freedom of the side chain aromatic chromophores were increased. In 6 m GuHCl containing 0.1 m 2-mercaptoethanol, complete disorganization of Fab(t) was demonstrated despite the fact that its circular dichroism spectra around 217 nm differed from the spectra of random coil polyamino acids.  相似文献   

11.
The development of alternative therapeutic strategies to tumor necrosis factor (TNF)-blocking antibodies for the treatment of inflammatory diseases has generated increasing interest. In particular, selective inhibition of TNF receptor 1 (TNFR1) promises a more precise intervention, tackling only the pro-inflammatory responses mediated by TNF while leaving regenerative and pro-survival signals transduced by TNFR2 untouched. We recently generated a monovalent anti-TNFR1 antibody fragment (Fab 13.7) as an efficient inhibitor of TNFR1. To improve the pharmacokinetic properties of Fab 13.7, the variable domains of the heavy and light chains were fused to the N-termini of newly generated heterodimerizing Fc chains. This novel Fc heterodimerization technology, designated “Fc-one/kappa” (Fc1κ) is based on interspersed constant Ig domains substituting the CH3 domains of a γ1 Fc. The interspersed immunoglobulin (Ig) domains originate from the per se heterodimerizing constant CH1 and CLκ domains and contain sequence stretches of an IgG1 CH3 domain, destined to enable interaction with the neonatal Fc receptor, and thus promote extended serum half-life. The resulting monovalent Fv-Fc1κ fusion protein (Atrosimab) retained strong binding to TNFR1 as determined by enzyme-linked immunosorbent assay and quartz crystal microbalance, and potently inhibited TNF-induced activation of TNFR1. Atrosimab lacks agonistic activity for TNFR1 on its own and in the presence of anti-human IgG antibodies and displays clearly improved pharmacokinetic properties.  相似文献   

12.
Monoclonal antibodies (mAbs) have become an important class of therapeutics, particularly in the realm of anticancer immunotherapy. While the two antigen-binding fragments (Fabs) of an mAb allow for high-avidity binding to molecular targets, the crystallizable fragment (Fc) engages immune effector elements. mAbs of the IgG class are used for the treatment of autoimmune diseases and can elicit antitumor immune functions not only by several mechanisms including direct antigen engagement via their Fab arms but also by Fab binding to tumors combined with Fc engagement of complement component C1q and Fcγ receptors. Additionally, IgG binding to the neonatal Fc receptor (FcRn) allows for endosomal recycling and prolonged serum half-life. To augment the effector functions or half-life of an IgG1 mAb, we constructed a novel “2Fc” mAb containing two Fc domains in addition to the normal two Fab domains. Structural and functional characterization of this 2Fc mAb demonstrated that it exists in a tetrahedral-like geometry and retains binding capacity via the Fab domains. Furthermore, duplication of the Fc region significantly enhanced avidity for Fc receptors FcγRI, FcγRIIIa, and FcRn, which manifested as a decrease in complex dissociation rate that was more pronounced at higher densities of receptor. At intermediate receptor density, the dissociation rate for Fc receptors was decreased 6- to 130-fold, resulting in apparent affinity increases of 7- to 42-fold. Stoichiometric analysis confirmed that each 2Fc mAb may simultaneously bind two molecules of FcγRI or four molecules of FcRn, which is double the stoichiometry of a wild-type mAb. In summary, duplication of the IgG Fc region allows for increased avidity to Fc receptors that could translate into clinically relevant enhancement of effector functions or pharmacokinetics.  相似文献   

13.
Circulating autoimmune complexes of IgM rheumatoid factors (RF) bound to the Fc portions of normal, polyclonal IgG antibodies are frequently present in humans with rheumatoid arthritis (RA). The sweet tasting methyl ester of L ‐Asp‐L ‐Phe (aspartame or APM) was found to relieve pain and improve joint mobility in subjects with osteo‐ and mixed osteo/rheumatoid arthritis [Edmundson, A. B. and Manion, C. V. ( 1998 ). Clin. Pharmac. Ther. 63 , 580–593]. These clinical observations prompted the testing of the inhibition by APM of the binding interactions of human IgM RFs with IgG Fc regions. The propensity of APM to inhibit IgM RF binding was assessed by competitive enzyme immunoassays with solid‐phase human IgG. Ten RA serum samples and three purified monoclonal cryoglobulins, all of which had RF activity, were tested in this system. We found that the presence of APM significantly reduced the binding of IgM RFs. The inhibitory propensity of APM with monoclonal RF cryoglobulins was increased by the addition of CaCl2 to the binding buffer. Similar inhibition of the binding of RA derived RFs to IgG was observed for Asp–Phe and its amidated derivative, indicating that the methyl ester is not required for APM's interaction with IgM antibodies. A human (Mez) IgM known to bind octameric peptides derived from the Fc portion of a human IgG1 antibody was tested for binding of dipeptides by the Pepscan method of combinatorial chemistry. The relative binding constants of Asp–Phe and Phe–Asp were ranked among the highest values for 400 possible combinations of the 20 most common amino acids. Possible blocking interactions of APM were explored by computer‐assisted docking studies with the model of a complex of an RF Fab with the Fc of a human IgG4 antibody. Modeling of ternary immune complexes revealed a few key residues, which could act as molecular recognition sites for APM. A structural hypothesis is presented to explain the observed interference with RF reactivity by APM. Extrapolations of the current results suggest that APM may inhibit the binding of IgG in a substantial proportion of IgM RFs. Interference of RF reactivity, especially in RA patients, may alleviate the pain and immobility resulting from chronic inflammation of the joints. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

14.
Various studies have demonstrated that Fc engineering to enhance neonatal Fc receptor (FcRn) binding is effective for elongating half-life or increasing cellular uptake of IgG. A previous study has shown that a N434H mutation to enhance FcRn binding resulted in increased binding to rheumatoid factor (RF) autoantibody, which is not desirable for therapeutic use in autoimmune disease. In this study, we first showed that all the existing Fc variants with enhanced FcRn binding also show increased RF binding, and then identified specific mutations that could be introduced to those Fc variants to reduce the RF binding. Furthermore, we generated novel Fc variants that do not increase RF binding and show half-lives of 45 d in cynomolgus monkey, which is longer than those of previously reported Fc variants. In addition, we generated novel Fc variants with antigen sweeping activity that do not increase RF binding. We expect that these novel Fc variants will be useful as antibody therapeutics against autoimmune diseases.  相似文献   

15.
The stability of therapeutic antibodies is a prime pharmaceutical concern. In this work we examined thermal stability differences between human IgG1 and IgG4 Fab domains containing the same variable regions using the thermofluor assay. It was found that the IgG1 Fab domain is up to 11°C more stable than the IgG4 Fab domain containing the same variable region. We investigated the cause of this difference with the aim of developing a molecule with the enhanced stability of the IgG1 Fab and the biological properties of an IgG4 Fc. We found that replacing the seven residues, which differ between IgG1 C(H) 1 and IgG4 C(H) 1 domains, while retaining the native IgG1 light-heavy interchain disulfide (L-H) bond, did not affect thermal stability. Introducing the IgG1 type L-H interchain disulfide bond (DSB) into the IgG4 Fab resulted in an increase in thermal stability to levels observed in the IgG1 Fab with the same variable region. Conversely, replacement of the IgG1 L-H interchain DSB with the IgG4 type L-H interchain DSB reduced the thermal stability. We utilized the increased stability of the IgG1 Fab and designed a hybrid antibody with an IgG1 C(H) 1 linked to an IgG4 Fc via an IgG1 hinge. This construct has the expected biophysical properties of both the IgG4 Fc and IgG1 Fab domains and may therefore be a pharmaceutically relevant format.  相似文献   

16.
IgG antibodies (Abs) and fragments of IgG Abs are becoming major biotherapeutics to treat an assortment of human diseases. Commonly prepared fragments of IgGs include Fc, Fab, and F(ab')2 fragments, all of which can be made using the sulfhydryl protease papain, although prolonged digestion times and/or excessive amounts of papain typically result in further cleavage of the Fc domain into smaller fragments. During our attempts to use papain to isolate Fc fragments from different IgG monoclonal Abs, it was observed that prior removal of Fc glycans resulted in a faster rate of papain-mediated degradation of the Fc domain. Subsequent time-course experiments comparing glycosylated and deglycosylated versions of IgG antibodies showed that the majority of molecules in a deglycosylated IgG sample were converted into Fab, Fc, and smaller Fc fragments in less than one hour, whereas the original glycosylated IgG required more than two hours to convert into a comparable amount of Fab and Fc fragments. Furthermore, whereas papain digestion converted almost all of a deglycosylated Fc fragment into smaller fragments of approximately 10 and approximately 12 kDa within 4 h, more than 40% of a glycosylated Fc fragment remained intact even after 24 h of digestion. These results indicate that the presence of CH(2) domain glycans in either IgGs or purified Fc fragments increases resistance to papain digestion. Increased sensitivity of non-glycosylated Fc domains to papain is consistent with the Fc domains lacking a defined structure, as exemplified by their inability to bind Fcgamma receptors, since misfolded proteins are often degraded by proteases because of increased accessibility of their proteolytic cleavage sites. Based on these observations it is possible to use papain sensitivity as a means of assessing proper Fc structure of IgG molecules.  相似文献   

17.
IgM1 immunoglobulins were cleaved into Fabμ and (Fc)5μ fragments by tryptic digestion. Comparative circular dichroism studies with the corresponding IgG fragments show that the Fab portions of IgG and IgM proteins have very similar CD spectral features, although the same is not true for their Fc fragments. These studies indicate the presence of higher amount of beta-structured regions in Fcμ than in Fcγ. Also, there are considerable differences in their pH-dependent structural transitions as measured by CD spectral changes. The conformational differences between IgG and IgM immunoglobulins are more pronounced in their Fc portions, which carry out class specific biological functions, rather than in Fab portions, which contain antigen combining sites.  相似文献   

18.
Papain digestion of 7S immunoglobulin G (IgG) produces two 3.5S Fab fragments and one 3.5S Fc fragment1–8. The Fab fragment contains one light chain and one Fd fragment and is still able to combine specifically univalently with antigen. The Fc fragment is a dimer of the carboxyl terminal half of the heavy chain. Pepsin splits 7S IgG into some small peptides derived from Fc and one 5S F(ab′)2 fragment, which contains both antigen-binding sites. Based on this information, some investigators6,7 have postulated that pepsin splits the γ chains at the C-terminal side of the inter-heavy chain disulphide bridges, whereas papain splits at the N-terminal side of the inter-heavy chain disulphide bridges. We report here evidence that this model does not apply to all IgG subclasses. In the case of human IgG2 subclass myeloma proteins, papain splits initially at the C-terminal side of inter-heavy chain disulphide bridges. We also show that the amino-acid sequence of the Fc fragment of human IgG2 subclass so far determined has approximately 95% homology with that of human IgG1 and IgG4 subclasses reported by others9–15.  相似文献   

19.
《ImmunoMethods》1993,2(1):9-15
Protein crystallography offers a powerful means of analyzing the molecular mechanisms that underlie the action of bacterial immunoglobulin-binding proteins. Successful approaches used to date involve the isolation of individual IgG-binding domains from the immunoglobulin-binding protein under study and the crystallization of these on their own or in complex with Fc or Fab fragments. Two structures of complexes that have been determined to high resolution by protein crystallography are compared. A single IgG-binding domain from protein A (from Staphylococcus) binds to a human Fc fragment through formation of two α-helices, which bind in the cleft between the CH2 and the CH3 domains. Recognition is mediated by side chains on protein A which interact with conserved side chains on the surface of the antibody, ensuring binding to IgG molecules from different subclasses and species. A similar analysis of the complex of a single IgG-binding domain from protein G (from Streptococcus) with an Fab fragment from mouse IgG1 reveals that the same problem in molecular recognition is tackled in a different way. Protein G binds via an antiparallel alignment of β-strands from the IgG-binding domain and the CH1 domain in Fab: this main chain-main chain interaction is supported by a number of specific hydrogen bonds between the side chains in both proteins. By recognition of a high proportion of main-chain atoms, protein G minimizes the effects of IgG sequence variability in a way that is distinct from that adopted by protein A.  相似文献   

20.
The mechanism of interaction of lectins with IgG molecules by the method of the lectin-enzyme assay has been described that allows to register a degree of human serum IgG molecules' glycosylation (mannosylation in case of lectin of Pisum sativum) in norm and at pathology. To detect an authentic difference in a glycosylation degree between control and pathological IgG, the wells of an ELISA plate were coated with an antibody in concentration of 1 microg/ml. Introducing alpha-D-mannose between the stages of incubation of immunoglobulin and lectin showed, that alpha-D-mannose inhibits the affinity of lectins for IgG. The preliminary incubation of lectin with IgG molecules stabilizes the activity of horseradish peroxidase, which labeled the lectins. Lectin-enzyme assay, in which Fab and Fc fragments of IgG were used, showed that lectin of Pisum sativum possesses a higher affinity for Fab regions. These findings and the glycosylation analysis of paraproteins and Bence-Jones proteins of multiple myeloma patients help to understand the details of interaction of immunoglobulins and lectins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号