共查询到20条相似文献,搜索用时 0 毫秒
1.
Effects of concentric and eccentric training on muscle strength, cross-sectional area, and neural activation 总被引:7,自引:0,他引:7
Higbie Elizabeth J.; Cureton Kirk J.; Warren Gordon L. III; Prior Barry M. 《Journal of applied physiology》1996,81(5):2173-2181
Higbie, Elizabeth J., Kirk J. Cureton, Gordon L. Warren III,and Barry M. Prior. Effects of concentric and eccentric trainingon muscle strength, cross-sectional area, and neural activation.J. Appl. Physiol. 81(5):2173-2181, 1996.We compared the effects of concentric (Con) andeccentric (Ecc) isokinetic training on quadriceps muscle strength,cross-sectional area, and neural activation. Women (age 20.0 ± 0.5 yr) randomly assigned to Con training (CTG;n = 16), Ecc training (ETG;n = 19), and control (CG;n = 19) groups were tested before andafter 10 wk of unilateral Con or Ecc knee-extension training. Averagetorque measured during Con and Ecc maximal voluntary knee extensions increased 18.4 and 12.8% for CTG, 6.8 and 36.2% for ETG, and 4.7 and1.7% for CG, respectively. Increases by CTG and ETG were greater than for CG (P < 0.05). ForCTG, the increase was greater when measured with Con than with Ecctesting. For ETG, the increase was greater when measured with Ecc thanwith Con testing. The increase by ETG with Ecc testing was greater thanthe increase by CTG with Con testing. Corresponding changes in theintegrated voltage from an electromyogram measured during strengthtesting were 21.7 and 20.0% for CTG, 7.1 and 16.7% for ETG, and8.0 and 9.1% for CG. Quadriceps cross-sectional areameasured by magnetic resonance imaging (sum of 7 slices) increased morein ETG (6.6%) than in CTG (5.0%) (P < 0.05). We conclude that Ecc is more effective than Con isokinetictraining for developing strength in Ecc isokinetic muscle actions andthat Con is more effective than Ecc isokinetic training for developingstrength in Con isokinetic muscle actions. Gains in strength consequentto Con and Ecc training are highly dependent on the muscle action usedfor training and testing. Muscle hypertrophy and neural adaptationscontribute to strength increases consequent to both Con and Ecctraining. 相似文献
2.
Isometric rate of torque development examines how quickly force can be exerted and may resemble everyday task demands more closely than isometric strength. Rate of torque development may provide further insight into the relationship between muscle function and gait following stroke. Aims of this study were to examine the test-retest reliability of hand-held dynamometry to measure isometric rate of torque development following stroke, to examine associations between strength and rate of torque development, and to compare the relationships of strength and rate of torque development to gait velocity. Sixty-three post-stroke adults participated (60 years, 34 male). Gait velocity was assessed using the fast-paced 10 m walk test. Isometric strength and rate of torque development of seven lower-limb muscle groups were assessed with hand-held dynamometry. Intraclass correlation coefficients were calculated for reliability and Spearman’s rho correlations were calculated for associations. Regression analyses using partial F-tests were used to compare strength and rate of torque development in their relationship with gait velocity. Good to excellent reliability was shown for strength and rate of torque development (0.82–0.97). Strong associations were found between strength and rate of torque development (0.71–0.94). Despite high correlations between strength and rate of torque development, rate of torque development failed to provide significant value to regression models that already contained strength. Assessment of isometric rate of torque development with hand-held dynamometry is reliable following stroke, however isometric strength demonstrated greater relationships with gait velocity. Further research should examine the relationship between dynamic measures of muscle strength/torque and gait after stroke. 相似文献
3.
4.
P. Era A. L. Lyyra J. T. Viitasalo E. Heikkinen 《European journal of applied physiology and occupational physiology》1992,64(1):84-91
Values of maximal isometric strength of five muscle groups and associated factors including occupational status, life style and health were studied in three groups of men aged from 31 to 35, 51 to 55, and 71 to 75 years. The results indicated significant differences between the age groups in isometric handgrip, elbow flexion, knee extension, trunk extension and trunk flexion strength. In the youngest group, the manual workers tended to have higher strength values in all muscle groups than the lower and higher status white collar workers; whereas among the middle-aged and oldest men the manual workers tended to have the poorest performance. Good self-rated health and the intensity of physical exercise during leisure were positively associated with muscle strength in the youngest and middle-aged groups whereas in the oldest group the most important variable was home gymnastics. The multivariate structural equation models of isometric strength differed somewhat among the age groups and in these models the above-mentioned variables accounted for from 33% to 43% of the variance in isometric strength within the age groups. The results illustrated the most important factors associated with isometric strength in samples of men of different ages and also provided suggestions as to how these determinants might influence comparisons between different age groups in respect of muscle strength. 相似文献
5.
Changes in strength and cross sectional area of the elbow flexors as a result of isometric strength training 总被引:3,自引:0,他引:3
J Davies D F Parker O M Rutherford D A Jones 《European journal of applied physiology and occupational physiology》1988,57(6):667-670
Changes in strength and size of the elbow flexor muscles have been compared during six weeks of isometric strength training in six male and six female subjects. Isometric training of one arm resulted in a significant increase in isometric force (14.5 +/- 5.1%, mean +/- SD, n = 12). No differences were seen in the response of male and female subjects. The extent of the change was similar to that reported for training studies of other muscles, thus refuting the suggestion that the elbow flexors may be especially amenable to training. Biceps and brachialis cross-sectional area (CSA) was measured from mid-upper arm X-ray computerized tomography before and after training. Muscles increased in area (5.4 +/- 3.8%) but this was smaller than, and not correlated with, the increase in strength. The main change in the first six weeks of strength training was therefore an increase in the force generated per unit cross-sectional area of muscle. The arrangement of fibres in the biceps is nearly parallel to the action of the muscle and it is argued that the increase in force per unit cross-sectional area is unlikely to be due to changes in the pennation of the muscle fibres as has been suggested for other muscles. 相似文献
6.
Kristina Tiainen Sarianna Sipil? Markku Alen Eino Heikkinen Jaakko Kaprio Markku Koskenvuo Asko Tolvanen Satu Pajala Taina Rantanen 《Journal of applied physiology》2004,96(1):173-180
The purpose of the present study was to examine genetic and environmental effects on maximal isometric handgrip, knee extension, and ankle plantar flexion strength. In addition, we wanted to investigate whether the strength of these three muscle groups shares a genetic component or whether the genetic effect is specific for each muscle group. Muscle strength was measured as part of the Finnish Twin Study on Aging in 97 monozygotic (MZ) and 102 dizygotic (DZ) female twin pairs, aged 63-76 yr. The MZ and DZ individuals did not differ from each other in age, body height, weight, or self-related health. The age-adjusted pairwise (intraclass) correlations of the MZ and DZ twins were, respectively, 0.462 and 0.242 in knee extension, 0.435 and 0.345 in handgrip, and 0.512 and 0.435 in ankle plantar flexion strength. The multivariate genetic analysis showed that handgrip and knee extension strength shared a genetic component, which accounted for 14% (95% confidence interval: 4-28%) of the variance in handgrip strength and 31% (95% confidence interval: 18-45%) in knee extension strength. The influence of genetic effects on ankle plantar flexion strength was minor and not significant. Furthermore, these three muscle groups had a nongenetic familial effect in common and nonshared environmental effects in common. The results suggested that muscle strength is under a genetic regulation, but also environmental effects have a significant role in explaining the variability in the muscle strength. 相似文献
7.
8.
Effects of electromyostimulation versus voluntary isometric training on elbow flexor muscle strength
The purpose of this study was to determine whether 7 weeks of standardized (same number and duration of repetitions, sets and rest strictly identical) electromyostimulation training of the elbow flexor muscles would induce strength gains equivalent to those of voluntary isometric training in isometric, eccentric and concentric contractions. Twenty-five males were randomly assigned to an electromyostimulated group (EMS, n = 9), a voluntary isometric group (VOL, n = 8), or a control group (CON, n = 8). Maximal voluntary isometric, eccentric and concentric strength, electromyographic (EMG) activity of the biceps and triceps brachii muscles, elbow flexor muscle activation (twitch interpolation technique) and contractile properties were assessed before and after the training period. The main findings were that the isometric torque gains of EMS were greater than those of VOL after the training period (P < 0.01) and that the eccentric and concentric torque gains were equivalent. In both groups, we observed that the mechanical twitch (Pt) was increased (P < 0.05) and that torque improvements were not mediated by neural adaptations. Considering the respective intensities of the training programs (i.e., submaximal contractions for EMS versus maximal for VOL), it can be concluded that electromyostimulation training would be more efficient than voluntary isometric training to improve both isometric and dynamic strength. 相似文献
9.
Arm-cranking muscle power and arm isometric muscle strength are independent predictors of all-cause mortality in men. 总被引:1,自引:0,他引:1
E Jeffrey Metter Laura A Talbot Matthew Schrager Robin A Conwit 《Journal of applied physiology》2004,96(2):814-821
Poor muscle strength is associated with mortality, presumably due to low muscle mass. Notably, muscle power declines more rapidly than muscle strength with increasing age, which may be related to more complex central nervous system movement control. We examined arm-cranking power against four workloads and isometric strength measured in the upper extremities of 993 men longitudinally tested over a 25-yr period. Muscle mass was estimated by using 24-h creatinine excretion; physical activity was assessed by self-reported questionnaire. Muscle power and strength were modeled by time by using mixed-effects models, which developed regression equations for each individual. The first derivative of these equations estimated rate of change in strength or power at each evaluation. Survival analyses, using the counting method, examined the impact of strength, power, and their rates of change on all-cause mortality while adjusting for age. Arm-cranking power [relative risk (rr) = 0.984 per 100 kg.m.min(-1), P < 0.001] was a stronger predictor of mortality than was arm strength (rr = 0.986 per 10 kg, P = not significant), whereas rate of power change (rr = 0.989 per 100 kg.min(-1).yr(-1)) and rate of arm strength change (rr = 0.888 per 10 kg/yr) were risks independent of the power or strength levels. The impacts of power and strength were partially independent of muscle mass and physical activity. The risk of mortality was similar across the four power workloads (rr = 0.93-0.96 per 100 kg.m.min(-1)), whereas the lowest load generated less than one-half the power as the higher loads. Arm-cranking power is a risk factor for mortality, independent of muscle strength, physical activity, and muscle mass. The impact is found with loads that do not generate maximal power, suggesting an important role for motor coordination and speed of movement. 相似文献
10.
Sieck G. C.; Sacks R. D.; Blanco C. E.; Edgerton V. R. 《Journal of applied physiology》1986,60(4):1284-1292
11.
12.
JD Coso C González-Millán JJ Salinero J Abián-Vicén L Soriano S Garde B Pérez-González 《PloS one》2012,7(8):e43280
Background
To investigate the cause/s of muscle fatigue experienced during a half-iron distance triathlon.Methodology/Principal Findings
We recruited 25 trained triathletes (36±7 yr; 75.1±9.8 kg) for the study. Before and just after the race, jump height and leg muscle power output were measured during a countermovement jump on a force platform to determine leg muscle fatigue. Body weight, handgrip maximal force and blood and urine samples were also obtained before and after the race. Blood myoglobin and creatine kinase concentrations were determined as markers of muscle damage.Results
Jump height (from 30.3±5.0 to 23.4±6.4 cm; P<0.05) and leg power output (from 25.6±2.9 to 20.7±4.6 W · kg−1; P<0.05) were significantly reduced after the race. However, handgrip maximal force was unaffected by the race (430±59 to 430±62 N). Mean dehydration after the race was 2.3±1.2% with high inter-individual variability in the responses. Blood myoglobin and creatine kinase concentration increased to 516±248 µg · L−1 and 442±204 U · L−1, respectively (P<0.05) after the race. Pre- to post-race jump change did not correlate with dehydration (r = 0.16; P>0.05) but significantly correlated with myoglobin concentration (r = 0.65; P<0.001) and creatine kinase concentration (r = 0.54; P<0.001).Conclusions/significance
During a half-iron distance triathlon, the capacity of leg muscles to produce force was notably diminished while arm muscle force output remained unaffected. Leg muscle fatigue was correlated with blood markers of muscle damage suggesting that muscle breakdown is one of the most relevant sources of muscle fatigue during a triathlon. 相似文献13.
The purpose of the present study was to investigate whether it is possible to predict the individual muscle volumes within the triceps surae (TS) muscle group by means of easily measurable parameters based on a theoretical consideration. A further objective was to verify the use of the available literature data to assess the contribution of each muscle of the group to the entire TS volume or physiological cross-sectional-area (PCSA). Therefore, magnetic resonance images of the right calf of 13 male subjects were acquired and each muscle of the TS was reconstructed. Muscle length (l(m)), the maximum anatomical cross-sectional-area (ACSA(max)) and muscle volume were obtained from the 3D models. To assess the PCSA, fascicle length was determined by ultrasonography. In general, muscle volume can be expressed as a fraction of the product of ACSA(max) and l(m). The size of the fraction depends on muscle shape and its coefficient of variance among the examined population was considerable low (soleus 6%, gastrocnemius 4% and gastrocnemius lateralis 7%) in the present study. The product of ACSA(max) and l(m) was, therefore, suitable to assess muscle volume (root mean squares, RMS 4-7%). Further, the soleus, gastrocnemius medialis and gastrocnemius lateralis accounted on average for about 52+/-3%, 32+/-2% and 16+/-2% of the total TS volume and 62+/-5%, 26+/-3% and 12+/-2% of the entire TS PCSA, respectively. The coefficient of variance of the relative portions were 5-10% for muscle volume and 8-17% for the PCSA. 相似文献
14.
Effect of isometric strength training of mechanical, electrical, and metabolic aspects of muscle function 总被引:2,自引:0,他引:2
P V Komi J T Viitasalo R Rauramaa V Vihko 《European journal of applied physiology and occupational physiology》1978,40(1):45-55
Monozygous twin pairs (two female and four male) were used in a strength training study so that one member of each pair served as training subject (TS) and the other members as nonexercising controls (CS). TS trained four times a week for 12 weeks with maximal isometric knee extensions of the right leg. The parameters studied included muscle strength, endurance time, electromyographic activity, and activities of several key enzymes in nonoxidative an oxidative muscle metabolism. The results disclosed that in addition to a 20% increase in isometric knee extension strength in the trained leg of TS, an average increase of 11% was observed in strength of TS untrained leg. CS did not demonstrate any change in muscle strength. Training also included an improvement in the maintenance of a static load of 60% of the pretraining maximum. Increase in the maximum integrated electromyographic activity (IEMG) of the rectus femoris muscle occurred concomitantly with the knee extension strength. Traning also caused reduction in the IEMG/tension ratio at submaximal loads indicating a more econimical usage of the rectus femoris muscles. Muscle biopsies taken from the vastus lateralis muscle showed that the enzyme activities of MDH, SDH, and HK were higher, and LDH and CPK lower in the trained leg as compared to the nontrained control leg of TS or to the values of the untrained member of the twin pair. It is concluded that isometric strength training as used in the present study can cause increased recruitment of the availabel motor unit pool, improved efficiency at submaximal loads, and surprisingly also enchancement of the oxidative metabolism in the muscle. 相似文献
15.
Ikegawa S Funato K Tsunoda N Kanehisa H Fukunaga T Kawakami Y 《Journal of strength and conditioning research / National Strength & Conditioning Association》2008,22(1):128-131
The present study aimed to examine the effect of pennation angle on the force per cross-sectional area for elbow extensor muscles in strength-trained athletes. A total of 52 male bodybuilders (n = 32) and Olympic weightlifters (n = 20) did maximal isometric elbow extension on an isokinetic dynamometer. Muscle cross-sectional area (CSA) and muscle-fiber pennation angle (PA) of the triceps brachii muscles were measured by ultrasonography. Bodybuilders had significantly greater isometric elbow extension force (F), CSA and PA than weightlifters. The ratio of force to CSA (F/CSA) of bodybuilders was significantly lower than that of weightlifters. A significant positive correlation was observed between CSA and PA in both groups (r = 0.832, P < 0.001, and r = 0.682, P < 0.001, for bodybuilders and weightlifters, respectively). The F/CSA was negatively correlated to PA both for bodybuilders (r = -0.408, P < 0.05) and weightlifters (r = -0.465, P < 0.05). Thus present study indicates that the larger pennation angle is associated with the lower force relative to muscle CSA in strength-trained athletes. 相似文献
16.
R J Maughan M A Nimmo M Harmon 《European journal of applied physiology and occupational physiology》1985,54(3):291-296
The influence of variations in muscle fibre composition on isometric endurance capacity was measured in 23 young healthy untrained male volunteers. After determination of the maximum voluntary force of contraction (MVC), subjects sustained to fatigue contractions at forces of 80%, 50% and 20% of MVC with a 5-min rest between each. A needle biopsy was obtained from m. vastus lateralis and used for histochemical determination of fibre composition based on myosin ATP-ase activity, and fibre are a based on succinate dehydrogenase (SDH) activity. Endurance times were 21 +/- 9 s (mean +/- SD) at 80% of MVC, 56 +/- 17 s at 50% of MVC and 203 +/- 89 s at 20% of MVC. A wide range of muscle fibre compositions was observed with Type I fibres accounting for 48.0 +/- 10.5% of the total, corresponding to 45.0 +/- 11.5% of the total muscle area. Muscle fibre composition, whether expressed as the proportions of the different fibre types present, or as the fraction of total muscle cross-sectional area occupied by each fibre type was not correlated with isometric endurance capacity at any of the three forces studied. Endurance time was also unrelated to MVC. In contrast to the results of previous studies where trained subjects were used, or where different muscle groups were compared, these results suggest that isometric endurance is not influenced by muscle fibre composition. 相似文献
17.
Measurement of number and cross-sectional area of basal cell pseudopodia: a new morphometric method 下载免费PDF全文
《The Journal of cell biology》1981,91(3):629-636
A method of morphometric quantitative of the number of pseudopodia per individual basal cell and the ratio of the total cross-sectional area of the pseudopodia to the base area of the basal cell, using the transmission electron microscope, was developed. The diameters and areas of the bases of basal cells and the pseudopodia were also obtained. The number of pseudopodia per basal cell (N) and the ratio of the areas (F) measured in normal human uterine cervical epithelium were 34.22 and 0.338, respectively. The values observed in reactive atypia were 23.62 and 0.188; and those in mild dysplasia of the cervical epithelium (the earliest premalignant condition of the cervical epithelium), 26.98 and 0.226. There were statistically significant reductions in the number of pseudopodia per cell (N) and the ratio of areas (F) in the latter two pathological conditions compared to the controls. This morphometric method provides higher sensitive means by which one can quantify the characteristics of pseudopodia in various premalignant epithelia. 相似文献
18.
G Sj?gaard G Savard C Juel 《European journal of applied physiology and occupational physiology》1988,57(3):327-335
The effect of isometric exercise on blood flow, blood pressure, intramuscular pressure as well as lactate and potassium efflux from exercising muscle was examined. The contractions performed were continuous or intermittent (5 s on, 5 s off) and varied between 5% and 50% maximal voluntary contraction (MVC). A knee-extensor and a hand-grip protocol were used. Evidence is presented that blood flow through the muscle is sufficient during low-level sustained contractions (less than 10% MVC). Despite this muscle fatigue occurs during prolonged contractions. One mechanism for this fatigue may be the disturbance of the potassium homeostasis. Such changes may also play a role in the development of fatigue during intermittent isometric contractions and even more so in the recovery from such exercise. In addition the role of impaired transport of substances within the muscle, due to long-lasting daily oedema formation, is discussed in relation to fatigue in highly repetitive, monotonous jobs. 相似文献
19.
Understanding muscle architecture is crucial to determining the mechanical function of muscle during body movements, because architectural parameters directly correspond to muscle performance. Accurate parameters are thus essential for reliable simulation. Human cadaveric muscle specimen data provides the anatomical detail needed for in-depth understanding of muscle and accurate parameter estimation. However, as muscle generally has non-uniform architecture, parameter estimation, specifically, physiological cross-sectional area (PCSA), is rarely straightforward. To deal effectively with this non-uniformity, we propose a geometric approach in which a polygon is sought to best approximate the cross-sectional area of each fascicle by accounting for its three-dimensional trajectory and arrangement in the muscle. Those polygons are then aggregated to determine PCSA and volume of muscle. Experiments are run using both synthetic data and muscle specimen data. From comparison of PCSA using synthetic data, we conclude that the proposed method enhances the robustness of PCSA estimation against variation in muscle architecture. Furthermore, we suggest reconstruction methods to extract 3D muscle geometry directly from fascicle data and estimated parameters using the level set method. 相似文献