首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
Recently significant progress has been made in differentiating embryonic stem (ES) cells toward pancreatic cells. However, little is known about the generation and identification of pancreatic progenitor cells from ES cells. Here we explored the influence of sodium butyrate on pancreatic progenitor differentiation, and investigated the different effects of sodium butyrate on pancreatic and hepatic progenitor formation. Our results indicated that different concentration and exposure time of sodium butyrate led to different differentiating trends of ES cells. A relatively lower concentration of sodium butyrate with shorter exposure time induced more pancreatic progenitor cell formation. When stimulated by a higher concentration and longer exposure time of sodium butyrate, ES cells differentiated toward hepatic progenitor cells rather than pancreatic progenitor cells. These progenitor cells could further mature into pancreatic and hepatic cells with the supplement of exogenous inducing factors. The resulting pancreatic cells expressed specific markers such as insulin and C‐peptide, and were capable of insulin secretion in response to glucose stimulation. The differentiated hepatocytes were characterized by the expression of a number of liver‐associated genes and proteins, and had the capability of glycogen storage. Thus, the current study demonstrated that sodium butyrate played different roles in inducing ES cells toward pancreatic or hepatic progenitor cells. These progenitor cells could be further induced into mature pancreatic cells and hepatocytes. This finding may facilitate the understanding of pancreatic and hepatic cell differentiation from ES cells, and provide a potential source of transplantable cells for cell‐replacement therapies. J. Cell. Biochem. 109: 236–244, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

5.
Although it is now clear that several subpopulations of neural stem cells (NSCs) exist during early development and adulthood, the angiogenic potential of NSCs remains a subject of debate. Here, we report that CD44(+) CD90(+) cells isolated from primary neurospheres can form vascular-tube structures in vitro. NSCs isolated from the mouse embryonic cortex formed neurospheres when cultured in serum-free medium containing 20ng/ml basic fibroblast growth factor (bFGF). CD44(+) CD90(+) cells were enriched from the neurospheres using an EPICS ALTRA flow cytometer, and antibodies against CD44 and CD90. The purified CD44(+) CD90(+) cells generated neurospheres, and differentiated into neurons and astrocytes. When the cells were inoculated into collagen gels and cultured with 20% fetal bovine serum plus bFGF for 7 days, vascular tube-like structures were formed. These results indicate that CD44(+) CD90(+) cells have the ability to generate neurospheres and to form vascular tubes.  相似文献   

6.
7.
The mechanisms that determine whether neural stem cells remain in a proliferative state or differentiate into neurons or glia are largely unknown. Here we establish a pivotal role for gap junction-mediated intercellular communication in determining the proliferation and survival of mouse neural progenitor cells (NPCs). When cultured in the presence of basic fibroblast growth factor (bFGF), NPCs express the gap junction protein connexin 43 and are dye-coupled. Upon withdrawal of bFGF, levels of connexin 43 and dye coupling decrease, and the cells cease proliferating and differentiate into neurons; the induction of gap junctions by bFGF is mediated by p42/p44 mitogen-activated protein kinases. Inhibition of gap junctions abolishes the ability of bFGF to maintain NPCs in a proliferative state resulting in cell differentiation or cell death, while overexpression of connexin 43 promotes NPC self-renewal in the absence of bFGF. In addition to promoting their proliferation, gap junctions are required for the survival of NPCs. Gap junctional communication is therefore both necessary and sufficient to maintain NPCs in a self-renewing state.  相似文献   

8.
CD4+T cells from aged humans or mice show significant reductions in IL-2 production upon activation. The resulting decreased proliferation is linked to higher risks of infection in the elderly. Several lines of evidence indicate that intrinsic defects preferentially affecting the naïve subset of CD4+T cells contribute to this reduced IL-2 production. Comparison of the biochemical pathways that transduce activation signals from the T cell receptor to the IL-2 promoter in young and old CD4+T cells has demonstrated age-related impairments at initial molecular events, in particular the phosphorylation of kinases and adapter proteins involved in the formation of signalosomes - complex multiprotein assemblies that provide the framework for effective signal transduction. Confocal microscopy has demonstrated a series of age-related impairments in effective immune synapse formation. Vitamin E can reverse many of these CD4+T cell age-associated defects, including reduced levels of phosphorylation of critical signaling/adapter proteins as well as defective immune synapse formation. Vitamin E also enhances IL-2 production, expression of several cell cycle control proteins, and proliferation. Although the precise mechanisms underlying this effect are not understood, it is possible that this antioxidant lipophilic vitamin can prevent the propagation of polyunsaturated fatty acid peroxidation in the cell membrane, influence the biochemical characteristics of specific lipid bilayer microdomains involved in signal transduction, modulate the activity of kinases/phosphatases, or interact with intracellular receptors.  相似文献   

9.
Stage-specific gene expression in erythroid progenitor cells (CFU-E)   总被引:1,自引:0,他引:1  
In erythropoietic differentiation, mature red blood cells are generated from specific progenitor cells through the action of specific growth regulatory molecules. To know the mechanism of differentiation, it is important to examine the control of gene expression in these progenitor cells in combination with growth regulatory molecules. We have cloned two genes expressing at a maximal level in the CFU-E (colony forming unit-erythroid), one of the erythroid progenitor cells from novel murine erythroleukemia (MEL) cell line (TSA8) which can be induced to CFU-E in vitro. The expression of these genes is well correlated with the appearance of CFU-E during induction of TSA8 cells, and is higher in the CFU-E-cells enriched from mouse fetal livers than in the more differentiated erythroid cells. Combining these with our previous results, it is suggested that in the erythropoiesis the progenitor cells have distinct patterns of gene expression. This expression is replaced through each progenitor cell rather than by the continuous increase in the expression of a set of genes specific to the mature erythroid cell following the commitment process.  相似文献   

10.
Isolation of a true self-renewing stem cell from the human brain would be of great interest as a reliable source of neural tissue. Here, we report that human fetal cortical cells grown in epidermal growth factor expressed low levels of telomerase and telomeres in these cultures shortened over time leading to growth arrest after 30 weeks. Following leukemia inhibitory factor (LIF) supplementation, growth rates and telomerase expression increased. This was best demonstrated following cell cycle synchronization and staining for telomerase using immunocytochemistry. This increase in activity resulted in the maintenance of telomeres at approximately 7 kb for more than 60 weeks in vitro. However, all cultures displayed a lack of oligodendrotye production, decreases in neurogenesis over time and underwent replicative senescence associated with increased expression of p21 before 70 weeks in vitro. Thus, under our culture conditions, these cells are not stable, multipotent, telomerase expressing self-renewing stem cells. They may be more accurately described as human neural progenitor cells (hNPC) with limited lifespan and bi-potent potential (neurons/astrocytes). Interestingly, hNPC follow a course of proliferation, neuronal production and growth arrest similar to that seen during expansion and development of the human cortex, thus providing a possible model neural system. Furthermore, due to their high expansion potential and lack of tumorogenicity, these cells remain a unique and safe source of tissue for clinical transplantation.  相似文献   

11.
LeX/SSEA1/CD15 is an extracellular matrix-associated carbohydrate expressed by ES cells and by adult neural and bone marrow stem cells. It is important for cell adhesion, compaction and FGF2 responses of early embryonic stem cells; however, its function at later stages is not clear. We now show that LeX is expressed by primary mouse neural progenitor cells, including neural stem cells, neuroblasts and glioblasts, but not by their more differentiated products. LeX distinguishes highly proliferative cells even in the primitive neuroepithelium, demonstrating heterogeneity in cell potential before radial glia arise. At later stages, LeX expressing progenitors are frequently radial in morphology. Surface LeX expression can be used to enrich neural stem and progenitor cells from different CNS regions throughout development by FACS. We found that LeX expression is particularly strong in neural regions with prolonged neurogenesis, e.g., the olfactory epithelium, hippocampus, basal forebrain and cerebellum. These regions also express high levels of the growth factors FGF8 and/or Wnt-1. We show here that LeX-containing molecules in the developing nervous system bind Wnt-1. Our findings suggest that LeX, which is present on the surface of principle neural progenitors and secreted into their extracellular niche, may bind and present growth factors important for their proliferation and self-renewal.  相似文献   

12.
13.
To date, there is no report on the effect of antioxidants on endothelial progenitor cells (EPCs). This study shows that in vitro incubation of EPCs with vitamin C and E reverted the already well documented lowering effect of TNF-α on EPC number and increased p-p38 expression levels. In order to document major changes of gene expression levels and gain insight into signalling pathways, microarray analysis was performed and a significant variation of the expression of 5389 genes in EPCs following antioxidant treatment was detected. Also in vivo evidence is provided about the positive effect of antioxidant vitamins on EPCs, since vitamin C and E supplementation potentiated the physical training-induced increase of EPC number and VEGF levels. Together, these data indicate that antioxidant treatment ameliorates EPC number and causes major changes of gene expression within these cells in vitro. Furthermore, concomitant antioxidant supplementation and physical training in vivo raised the levels of circulating EPCs and serum VEGF more than physical training alone.  相似文献   

14.
15.
The breakthrough development of induced pluripotent stem cells(iPSCs)raises the prospect of patient-specific treatment for many diseases through the replacement of affected cells.However,whether iPSC-derived functional cell lineages generate a deleterious immune response upon auto-transplantation remains unclear.In this study,we differentiated five human iPSC lines from skin fibroblasts and urine cells into neural progenitor cells(NPCs)and analyzed their immunogenicity.Through co-culture with autogenous peripheral blood mononuclear cells(PBMCs),we showed that both somatic cells and iPSC-derived NPCs do not stimulate significant autogenous PBMC proliferation.However,a significant immune reaction was detected when these cells were co-cultured with allogenous PBMCs.Furthermore,no significant expression of perforin or granzyme B was detected following stimulation of autogenous immune effector cells(CD3+CD8 T cells,CD3+CD8+T cells or CD3 CD56+NK cells)by NPCs in both PBMC and T cell co-culture systems.These results suggest that human iPSC-derived NPCs may not initiate an immune response in autogenous transplants,and thus set a base for further preclinical evaluation of human iPSCs.  相似文献   

16.
17.
Human dental stem or precursor cells can differentiate into multiple cell types like adipocytes, osteoblasts or chondrocytes. Recently, a number of different human dental stem cell lines were differentiated into neurons. This makes dental stem cells interesting as possible cell-based therapeutics for neural degenerative diseases. To test this hypothesis, we have investigated the neural differentiation potential of murine dental follicle precursor cells (mDFPCs). The mDFPC cell line was newly established without cell immortalization. After differentiation, neural cell marker expression in mDFPCs was checked and compared with that of murine retinal progenitor cells (mRPCs). Differentiated mDFPCs became neuron-like cells with small cell bodies and long/branching neurites, similar to differentiated mRPCs. However, mRPCs showed more complete neural differentiation. Furthermore, 5% of the differentiated mDFPCs and 37% of the differentiated mRPCs were positive for the glia cell marker GFAP (glial fibrillary acidic protein). The data presents new evidence of neural differentiation of mDFPCs, but only a small percentage of mDFPCs differentiated into glia cells, unlike mRPCs.  相似文献   

18.
Hepatic stellate cells (HSC) play an important role in the development of liver fibrosis. Here, we report that HSC express the stem/progenitor cell marker CD133 and exhibit properties of progenitor cells. CD133+ HSC of rats were selected by specific antibodies and magnetic cell sorting. Selected cells displayed typical markers of HSC, endothelial progenitor cells (EPC), and monocytes. In cell culture, CD133+ HSC transformed into alpha-smooth muscle actin positive myofibroblast-like cells, whereas application of cytokines known to facilitate EPC differentiation into endothelial cells led to the formation of branched tube-like structures and induced expression of the endothelial cell markers endothelial nitric oxide synthase and vascular-endothelial cadherin. Moreover, cytokines that guide stem cells to develop hepatocytes led to the appearance of rotund cells and expression of the hepatocyte markers alpha-fetoprotein and albumin. It is concluded that CD133+ HSC are a not yet recognized progenitor cell compartment with characteristics of early EPC. Their potential to differentiate into endothelial or hepatocyte lineages suggests important functions of CD133+ HSC during liver regeneration.  相似文献   

19.
20.
The CD133 antigen, identified as a hematopoietic stem cell marker, appears in various human embryonic epithelia including the neural tube, gut, and kidney. We herein investigated whether CD133(+) cells isolated from human hepatocellular carcinoma cell lines possess cancer stem/progenitor cell-like properties. Among the three cell lines studied, the CD133 antigen was found to be expressed only on the surface of Huh-7 cells. CD133(+) cells from Huh-7 performed a higher in vitro proliferative potential and lower mRNA expressions of mature hepatocyte markers, glutamine synthetase and cytochrome P450 3A4, than CD133(-) population of Huh-7 cells. When either CD133(+) or CD133(-) cells were subcutaneously injected into SCID mice, CD133(+) cells formed tumors, whereas CD133(-) cells induced either a very small number of tumors or none at all. Taken together, the identification of CD133(+) cells could thus be a potentially powerful tool to investigate the tumorigenic process in the hepatoma system and to also develop effective therapies targeted against hepatocellular carcinoma.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号