首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Exploring the role of cannabinoid CB(2) receptors in the brain, we present evidence of CB(2) receptor molecular and functional interaction with cannabinoid CB(1) receptors. Using biophysical and biochemical approaches, we discovered that CB(2) receptors can form heteromers with CB(1) receptors in transfected neuronal cells and in rat brain pineal gland, nucleus accumbens, and globus pallidus. Within CB(1)-CB(2) receptor heteromers expressed in a neuronal cell model, agonist co-activation of CB(1) and CB(2) receptors resulted in a negative cross-talk in Akt phosphorylation and neurite outgrowth. Moreover, one specific characteristic of CB(1)-CB(2) receptor heteromers consists of both the ability of CB(1) receptor antagonists to block the effect of CB(2) receptor agonists and, conversely, the ability of CB(2) receptor antagonists to block the effect of CB(1) receptor agonists, showing a bidirectional cross-antagonism phenomenon. Taken together, these data illuminate the mechanism by which CB(2) receptors can negatively modulate CB(1) receptor function.  相似文献   

2.
A new series of imidazopyridine CB2 agonists is described. Structural optimization improved CB2/CB1 selectivity in this series and conferred physical properties that facilitated high in vivo exposure, both centrally and peripherally. Administration of a highly selective CB2 agonist in a rat model of analgesia was ineffective despite substantial CNS exposure, while administration of a moderately selective CB2/CB1 agonist exhibited significant analgesic effects.  相似文献   

3.
Several chiral, analogues of the endogenous cannabinoid receptor ligand, arachidonylethanolamide (anandamide), methylated at the 2,1' and 2' positions using asymmetric synthesis were evaluated in order to study (a) stereoselectivity of binding to CB1 and CB2 cannabinoid receptors; and (b) metabolic stability with regard to anandamide amidase. Enantiomerically pure 2-methyl arachidonic acids were synthesized through diastereoselective methylation of the respective chiral 2-oxazolidinone enolate derivatives and CB1 and CB2 receptor affinities of the resulting chiral anandamides were evaluated using a standard receptor binding assay. Introduction of a single 2-methyl group increased affinity for CB1, led to limited enantioselectivity and only modestly improved metabolic stability. However, a high degree of enantio- and diastereoselectivity was observed for the 2,1'-dimethyl analogues. (R)-N-(1-methyl-2-hydroxyethyl)-2-(R)-methyl-arachidonamide (4) exhibited the highest CB1 receptor affinity in this series with a K(i) of 7.42 nM, an at least 10-fold improvement on anandamide (K(i)=78.2 nM). The introduction of two methyl groups at the 2-position of anandamide led to no change in affinity for CB1 but somewhat enhanced metabolic stability. Conversely, chiral headgroup methylation in the 2-gem-dimethyl series led to chiral analogues possessing a wide range of CB1 affinities. Of these the (S)-2,2,2'-trimethyl analogue (12) had the highest affinity for CB1 almost equal to that of anandamide. In agreement with our previous anandamide structure-activity relationship work, the analogues in this study showed high selectivity for the CB1 receptor over CB2. The results are evaluated in terms of stereochemical factors affecting the ligand's affinity for CB1 using receptor-essential volume mapping as an aid. Based on the results, a partial CB1 receptor site model is proposed, that bears two hydrophobic pockets capable of accommodating 1'- and 2-methyl groups  相似文献   

4.
Nebane NM  Kellie B  Song ZH 《FEBS letters》2006,580(22):5392-5398
Charge-neutralizing mutation D6.30N of the human cannabinoid receptor subtype 1 (CB1) and cannabinoid receptor subtype 2 (CB2) cannabinoid receptors was made to test two hypotheses: (1) D6.30 may be crucial for the functions of CB1 and CB2 receptors. (2) D6.30 may participate in an ionic lock with R3.50 that keeps the receptors in an inactive conformation. Specific ligand binding and ligand-induced inhibition of forskolin-stimulated cAMP accumulation were observed with human embryonic kidney epithelial cell line (HEK293) cells expressing wild-type CB1 and CB2, as well as CB1D6.30N and CB2D6.30N mutant receptors. There was however a decrease in maximum response of the mutant receptors compared to their wild-type counterparts, suggesting that D6.30 is essential for full activation of both CB1 and CB2 receptors. Both CB1D6.30N and CB2D6.30N demonstrated a level of constitutive activity no greater than that of their wild-type counterparts, indicating that either D6.30 does not participate in a salt bridge with R3.50, or the salt bridge is not critical for keeping cannabinoid receptors in the inactive conformation.  相似文献   

5.
To investigate the expression of the endocannabinoid 1 and 2 receptors by human adipocyte cells of omental and subcutaneous fat tissue, as well as to determine whether these receptors are functional. The expression of CB1 and CB2 receptors on human adipocytes was analyzed by western blotting, immunohistology and immunocytology. We also investigated intracytoplasmic cyclic AMP level modulation following CB1 and CB2 receptor stimulation by an enzymatic immuno assay. All mature adipocytes, from visceral (epiploon) and subcutaneous fat tissue, express CB1 and CB2 on their plasma membranes. We also demonstrate in this study that adipocyte precursors (pre-adipocytes) express CB1 and CB2 on their plasma membranes and that both receptors are functional. Activation of CB1 increases intracytoplasmic cyclic AMP whilst CB2 activation leads to a cyclic AMP decrease. Here we demonstrate, for the first time, that adipocytes of human adipose tissue (mature adipocytes and pre-adipocytes) express functional plasma membrane CB1 and CB2 receptors. Their physiological role on the adipose tissue is not known. However, their major involvement in the physiology of other tissues leads us to suppose that they could play a significant role in the homeostasis of the energy balance and/or in the regulation of adipose tissue inflammation.  相似文献   

6.
Ajulemic acid, a side-chain analog of Δ8-THC-11-oic acid, was designed as a potent therapeutic agent free of the psychotropic adverse effects typical of most cannabinoids. Subsequent studies of ajulemic acid have yielded widely divergent findings on the occurrence of these adverse effects. To help resolve these discrepancies, we have prepared highly purified ajulemic acid using a different synthetic method than previously reported in the literature and compared its cannabinoid receptor binding constants with those obtained using several other preparations from different sources. Whereas CB2 binding did not vary greatly among all of the samples, the CB1 binding showed a wide range of affinities. The highly purified product (JBT-101) reported here had the weakest affinity for CB1 while the original preparation (HU-239) showed the strongest affinity for CB1. The CB1/CB2 ratio of affinities was 12.3 for JBT-101 whereas that for HU-239 was 0.19, a 65-fold difference. Functional responses such as catalepsy and hypothermia using JBT-101 versus HU-239 displayed reduced CB1 activity in keeping with the receptor binding data. Thus, earlier conclusions on the limited therapeutic index for ajulemic acid need to be reconsidered in the light of the data now obtained using JBT-101.  相似文献   

7.
The optimization of a series of 3-carbamoyl 2-pyridone derivatives as CB agonists is reported. These efforts resulted in the discovery of 3-(2-(1-(cyclohexylmethyl)-2-oxo-1,2,5,6,7,8,9,10-octahydrocycloocta[b]pyridine-3-carboxamido)thiazol-4-yl)propanoic acid (21), a potent dual CB1/CB2 agonist without CNS side effects induced by CB1 receptor activation. It exhibited strong inhibition of scratching as a 1.0% acetone solution in the pruritic model.  相似文献   

8.
The preparation and evaluation of a novel class of CB2 agonists based on a benzimidazole moiety are reported. They showed binding affinities up to 1nM towards the CB2 receptor with partial to full agonist potencies. They also demonstrated good to excellent selectivity (>1000-fold) over the CB1 receptor.  相似文献   

9.
12-Phenylacetyl-ricinoleoyl-vanillamide (phenylacetylrinvanil, PhAR, IDN5890), is an ultra-potent agonist of human vanilloid TRPV1 receptors also endowed with moderate affinity for human cannabinoid CB(2) receptors. To improve its CB(2) affinity and temper its potency at TRPV1, the modification of the polar headgroup and the lipophilic 12-acylgroup of PhAR was pursued. Replacement of the vanillyl headgroup of PhAR with various aromatic or alkyl amino groups decreased activity at TRPV1 receptors, although the dopamine, cyclopropylamine, 1'-(R)- and 1'-(S)-methyl-ethanolamine, and ethanolamine derivatives retained significant potency (EC(50) 31-126 nM). Within these compounds, the 12-phenylacetylricinoleyl cyclopropylamide and ethanolamide were the strongest ligands at CB(2) receptors, with K(i) of 22 and 44 nM, and 14- and >20-fold selectivity over cannabinoid CB(1) receptors, respectively. The propyl- and allyl-derivatives also exhibited high affinity at CB(2) receptors (K(i)=40 and 22 nM, with 40 and >80-fold selectivity over CB(1) receptors, respectively), but no activity at TRPV1 receptors. The cyclopropyl- and allyl-derivatives behaved as CB(2) inverse agonists in the GTP-gamma-S binding assay. Addition of para-methoxy, -tert-butyl or -chlorine groups to the 12-phenylacetyl moiety of PhAR produced compounds that retained full potency at TRPV1 receptors, but with improved selectivity over CB(2) or CB(1) receptors. Thus, the manipulation of PhAR led to the development of the first CB(2)/TRPV1 dual ligands and of an entirely new class of inverse agonists at CB(2) receptors. Both types of compounds might find application in the treatment of inflammation, and represent new molecular probes to investigate the endocannabinoid-endovanilloid signalling system.  相似文献   

10.
Cannabinoid receptors, CB1 and CB2, are therapeutic targets in the treatment of anxiety, obesity, movement disorders, glaucoma, and pain. We have developed an on-line screening method for CB1 and CB2 ligands, where cellular membrane fragments of a chronic myelogenous leukemia cell line, KU-812, were immobilized onto the surface of an open tubular (OT) capillary to create a CB1/CB2–OT column. The binding activities of the immobilized CB1/CB2 receptors were established using frontal affinity chromatographic techniques. This is the first report that confirms the presence of functional CB1 and CB2 receptors on KU-812 cells. The data from this study confirm that the CB1/CB2–OT column can be used to determine the binding affinities (Ki values) for a single compound and to screen individual compounds or a mixture of multiple compounds. The CB1/CB2–OT column was also used to screen a botanical matrix, Zanthoxylum clava-herculis, where preliminary results suggest the presence of a high-affinity phytocannabinoid.  相似文献   

11.
Tamoxifen (Tam) is classified as a selective estrogen receptor modulator (SERM) and is used for treatment of patients with ER-positive breast cancer. However, it has been shown that Tam and its cytochrome P450-generated metabolite 4-hydroxy-Tam (4OH-Tam) also exhibit cytotoxic effects in ER-negative breast cancer cells. These observations suggest that Tam and 4OH-Tam can produce cytotoxicity via estrogen receptor (ER)-independent mechanism(s) of action. The molecular targets responsible for the ER-independent effects of Tam and its derivatives are poorly understood. Interestingly, similar to Tam and 4OH-Tam, cannabinoids have also been shown to exhibit anti-proliferative and apoptotic effects in ER-negative breast cancer cells, and estrogen can regulate expression levels of cannabinoid receptors (CBRs). Therefore, this study investigated whether CBRs might serve as novel molecular targets for Tam and 4OH-Tam. We report that both compounds bind to CB1 and CB2Rs with moderate affinity (0.9–3 μM). Furthermore, Tam and 4OH-Tam exhibit inverse activity at CB1 and CB2Rs in membrane preparations, reducing basal G-protein activity. Tam and 4OH-Tam also act as CB1/CB2R-inverse agonists to regulate the downstream intracellular effector adenylyl cyclase in intact cells, producing concentration-dependent increases in intracellular cAMP. These results suggest that CBRs are molecular targets for Tam and 4OH-Tam and may contribute to the ER-independent cytotoxic effects reported for these drugs. Importantly, these findings also indicate that Tam and 4OH-Tam might be used as structural scaffolds for development of novel, efficacious, non-toxic cancer drugs acting via CB1 and/or CB2Rs.  相似文献   

12.
A novel series of sulfonamide derivatives 3, the CB(2) receptor agonists, was synthesized and evaluated for activity against the human CB(2) receptor. We first identified sulfonamide 3a, which was obtained by random screening of our in-house chemical library as a moderately active (CB(2) IC(50)=340nM) CB(2) receptor agonist. We then attempted to test its analogues to identify compounds with a high affinity for the CB(2) receptor. One of these, compound 3f, exhibited high affinity for the human CB(2) receptor (IC(50)=16nM) and high selectivity for CB(2) over CB(1) (CB(1) IC(50)/CB(2)IC(50)=106), and behaved as a full CB(2) receptor agonist in the [(35)S]GTPgammaS binding assay (CB(2) EC(50)=7.2nM, E(max)=100%).  相似文献   

13.
14.
15.
A novel series of benzimidazole CB2-receptor agonists was synthesized and the structure-activity relationship explored. The results showed agonistic activities with an EC(50) up to 0.5 nM and excellent selectivity (>4000-fold) over the CB1 receptor. The size of the substituent on the 2-position determined the level of agonism, ranging from inverse agonism to partial agonism to full agonism, which was more pronounced for the rat CB2 receptor. A wide variation of sulfonyl substituents at the benzimidazole 5-position was tolerated, which was used to optimize the drug-like properties. This resulted into lead compound 14j that can be used to investigate the potential of a selective, peripherically acting CB2 agonist. The in vitro profile of key compounds is displayed using pie bar charts (VlaaiVis).  相似文献   

16.
In an effort to improve indole-based CB(2) cannabinoid receptor ligands and also to develop SAR for both the CB(1) and CB(2) receptors, 47 indole derivatives were prepared and their CB(1) and CB(2) receptor affinities were determined. The indole derivatives include 1-propyl- and 1-pentyl-3-(1-naphthoyl)indoles both with and without a 2-methyl substituent. Naphthoyl substituents include 4- and 7-alkyl groups as well as 2-, 4-, 6-, 7-methoxy and 4-ethoxy groups. The effects of these substituents on receptor affinities are discussed and structure-activity relationships are presented. In the course of this work three new highly selective CB(2) receptor agonists were identified, 1-propyl-3-(4-methyl-1-naphthoylindole (JWH-120), 1-propyl-2-methyl-3-(6-methoxy-1-naphthoylindole (JWH-151), and 1-pentyl-3-(2-methoxy-1-naphthoylindole (JWH-267). GTPgammaS assays indicated that JWH-151 is a full agonist at CB(2), while JWH-120 and JWH-267 are partial agonists. Molecular modeling and receptor docking studies were carried out on a set of 3-(4-propyl-1-naphthoyl)indoles, a set of 3-(6-methoxy-1-naphthoyl)indoles and the pair of N-pentyl-3-(2-methoxy-1-naphthoyl)indoles. Docking studies indicated that the CB(1) receptor affinities of these compounds were consistent with their aromatic stacking interactions in the aromatic microdomain of the CB(1) receptor.  相似文献   

17.
Endocannabinoids and CB1 receptors have been implicated in endotoxin (LPS)-induced hypotension: LPS stimulates the synthesis of anandamide in macrophages, and the CB1 antagonist SR-141716 inhibits the hypotension induced by treatment of rats with LPS or LPS-treated macrophages. Recent evidence indicates the existence of cannabinoid receptors distinct from CB1 or CB2 that are inhibited by SR-141716 but not by other CB1 antagonists such as AM251. In pentobarbital-anesthetized rats, intravenous injection of 10 mg/kg LPS elicited hypotension associated with profound decreases in cardiac contractility, moderate tachycardia, and an increase in lower body vascular resistance. Pretreatment with 3 mg/kg SR-141716 prevented the hypotension and decrease in cardiac contractility, slightly attenuated the increase in peripheral resistance, and had no effect on the tachycardia caused by LPS, whereas pretreatment with 3 mg/kg AM251 did not affect any of these responses. SR-141716 also elicited an acute reversal of the hypotension and decreased contractility when administered after the response to LPS had fully developed. The LPS-induced hypotension and its inhibition by SR-141716 were similar in pentobarbital-anesthetized wild-type, CB1(-/-), and CB1(-/-)/CB2(-/-) mice. We conclude that SR-141716 inhibits the acute hemodynamic effects of LPS by interacting with a cardiac receptor distinct from CB1 or CB2 that mediates negative inotropy and may be activated by anandamide or a related endocannabinoid released during endotoxemia.  相似文献   

18.
Inhibition of pain responses by activation of CB(2) cannabinoid receptors   总被引:4,自引:0,他引:4  
Cannabinoid receptor agonists diminish responses to painful stimuli. Extensive evidence demonstrates that CB(1) cannabinoid receptor activation inhibits pain responses. Recently, the synthesis of CB(2) cannabinoid receptor-selective agonists has allowed testing whether CB(2) receptor activation inhibits pain. CB(2) receptor activation is sufficient to inhibit acute nociception, inflammatory hyperalgesia, and the allodynia and hyperalgesia produced in a neuropathic pain model. Studies using site-specific administration of agonist and antagonist have suggested that CB(2) receptor agonists inhibit pain responses by acting at peripheral sites. CB(2) receptor activation also inhibits edema and plasma extravasation produced by inflammation. CB(2) receptor-selective agonists do not produce central nervous system (CNS) effects typical of cannabinoids retaining agonist activity at the CB(1) receptor. Peripheral antinociception without CNS effects is consistent with the peripheral distribution of CB(2) receptors. CB(2) receptor agonists may have promise for the treatment of pain and inflammation without CNS side effects.  相似文献   

19.
The endocannabinoid system is known to regulate neural progenitor (NP) cell proliferation and neurogenesis. In particular, CB(2) cannabinoid receptors have been shown to promote NP proliferation. As CB(2) receptors are not expressed in differentiated neurons, CB(2)-selective agonists are promising candidates to manipulate NP proliferation and indirectly neurogenesis by overcoming the undesired psychoactive effects of neuronal CB(1) cannabinoid receptor activation. Here, by using NP cells, brain organotypic cultures, and in vivo animal models, we investigated the signal transduction mechanism involved in CB(2) receptor-induced NP cell proliferation and neurogenesis. Exposure of hippocampal HiB5 NP cells to the CB(2) receptor-selective agonist HU-308 led to the activation of the phosphatidylinositol 3-kinase (PI3K)/Akt/mammalian target of rapamycin complex 1 (mTORC1) pathway, which, by inhibiting its downstream target p27Kip1, induced NP proliferation. Experiments conducted with the CB(2) receptor-selective antagonist SR144528, inhibitors of the PI3K/Akt/mTORC1 axis, and CB(2) receptor transient-transfection vector further supported that CB(2) receptors control NP cell proliferation via activation of mTORC1 signaling. Likewise, CB(2) receptor engagement induced cell proliferation in an mTORC1-dependent manner both in embryonic cortical slices and in adult hippocampal NPs. Thus, HU-308 increased ribosomal protein S6 phosphorylation and 5-bromo-2'-deoxyuridine incorporation in wild-type but not CB(2) receptor-deficient NPs of the mouse subgranular zone. Moreover, adult hippocampal NP proliferation induced by HU-308 and excitotoxicity was blocked by the mTORC1 inhibitor rapamycin. Altogether, these findings provide a mechanism of action and a rationale for the use of nonpsychotomimetic CB(2) receptor-selective ligands as a novel strategy for the control of NP cell proliferation and neurogenesis.  相似文献   

20.
Formerly considered as an exclusively peripheral receptor, it is now accepted that CB(2) cannabinoid receptor is also present in limited amounts and distinct locations in the brain of several animal species, including mice. However, the possible roles of CB(2) receptors in the brain need to be clarified. The aim of our work was to study the mu-opioid receptor (MOR) mRNA expression level and functional activity after acute in vivo and in vitro treatments with the endocannabinoid noladin ether (NE) and with the CB(2) receptor antagonist SR144528 in brainstem of mice deficient in either CB(1) or CB(2) receptors. This study is based on our previous observations that noladin ether (NE) produces decrease in the activity of MOR in forebrain and this attenuation can be antagonized by the CB(2) cannabinoid antagonist SR144528, suggesting a CB(2) receptor mediated effect. We used quantitative real-time PCR to examine the changes of MOR mRNA levels, [(35)S]GTPgammaS binding assay to analyze the capability of mu-opioid agonist DAMGO to activate G-proteins and competition binding assays to directly measure the ligand binding to MOR in mice brainstem. After acute NE administration no significant changes were observed on MOR signaling. Nevertheless pretreatment of mice with SR144528 prior to the administration of NE significantly decreased MOR signaling suggesting the involvement of SR144528 in mediating the effect of MOR. mRNA expression of MORs significantly decreased both in CB(1) wild-type and CB(1) knockout mice after a single injection of SR144528 at 0.1mg/kg when compared to the vehicle treated controls. Consequently, MOR-mediated signaling was attenuated after acute in vivo treatment with SR144528 in both CB(1) wild-type and CB(1) knockout mice. In vitro addition of 1microM SR144528 caused a decrease in the maximal stimulation of DAMGO in [(35)S]GTPgammaS binding assays in CB(2) wild-type brainstem membranes whereas no significant changes were observed in CB(2) receptor knockouts. Radioligand binding competition studies showed that the noticed effect of SR144528 on MOR signaling is not mediated through MORs. Our data demonstrate that the SR144528 caused pronounced decrease in the activity of MOR is mediated via CB(2) cannabinoid receptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号