首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper we show the protective effect of folic acid on oxidative stress in offspring caused by chronic maternal ethanol consumption during pregnancy and the lactation period. Glutathione reductase (GR) specific activity was assayed in liver and pancreas of offspring and mothers. In the offspring, these tissues were also assayed for markers of oxidative damage to lipids and proteins. The results show that ethanol exposure during pregnancy and lactation increased the specific activity of GR in tissues of the mothers (32-34% increase) as well as in the liver of their progeny (24%). Thiobarbituric acid reactive substances (TBARS) were also increased in the liver and pancreas of 21-day-old rats (37- and 54%, respectively). Alcohol also increased the amount of carbonyl groups in proteins in both tissues. These measures of ethanol-mediated oxidative stress were mitigated when pregnant rats were treated with folic acid concomitantly to ethanol administration. The antioxidant capacity of folic acid seems to be involved in its protective effect. The results obtained in the present work suggest that folic acid may be useful in the prevention of damage and promotion of health of the progeny of ethanol-treated rats.  相似文献   

2.
A fostering/crossfostering analysis of the effects of maternal ethanol exposure on jejunal and ileal folate absorption was performed. Male and female rats were randomized into two groups. In the first group, ethanol-treated rats received ad libitum 5, 10 and 15% ethanol in the drinking fluid during three successive weeks. A consumption of 20% was maintained in this group for 5 additional weeks. Ethanol-treated rats were mated. Group 2 served as the control. To study the effect of chronic alcoholism during lactation or gestation separately, at birth (2nd day postpartum) control newborns were cross-fostered to ethanol dams (EG), and the pups issued from the ethanol treated mothers were cross-fostered to control dams (CG). Thus, three experimental groups of pups were formed: (1) control pups receiving no treatment during gestation and lactation (CG); (2) pups exposed to ethanol only during gestation (GG); and (3) pups exposed to ethanol only during lactation (LG). At 21 days postpartum the jejunal and distal ileum folate absorption was determined in the offspring rats by a perfusion technique. Milk folic acid levels were determined by an immunoluminometric assay. The results showed an increase in jejunal folic acid absorption in offsprings exposed to ethanol only during the lactation period (LG). However, in pups exposed to ethanol only during the gestation period (GG), the jejunal folic acid absorption was significantly increased only at concentrations of 0.25, 0.5 and 2.5 microM. No free folic acid absorption occurred in the distal ileum of control pups (CG) at day 21 at all assayed concentrations but in offsprings exposed to ethanol only during the gestation or lactation periods absorption did take place. Pups exposed to ethanol during the gestation period (GG) showed decreased values in ileum folic acid absorption at the lowest assayed concentration (0.25 microM) compared to values obtained for pups exposed to ethanol only during lactation (LG). Milk folic acid levels were significantly decreased in the ethanol-fed dams on day 21 of lactation. These results indicate that exposure of rats to ethanol during the lactation period affects more severely postnatal development of intestinal functions than ethanol exposure only during gestation. In summary, both the exposure to ethanol itself and the decrease in folic acid intake caused alterations in the function of the intestinal mucosa in the offspring, which in turn altered absorption time and development. However, the present results do not explain how ethanol stimulated intestinal absorption of folic acid in pups exposed to ethanol during the gestation or lactation periods. Further studies are needed.  相似文献   

3.
This study was designed to examine the effects of supplementation with folic acid and amino acids in dams that consumed ethanol during gestation and lactation to see whether there is an improvement in the intestinal absorption of zinc in pup rats on the 21st day after birth. The rats were randomized into two groups: Ethanol-rats (EG) were administered ethanol during the pregnancy and lactation periods; the ethanol-folic acid group (EFG) received a folic acid and amino acid supplement concomitantly with ethanol administration during pregnancy and lactation. The dams were mated to obtain the first offspring. Two sets of experiments were performed on the offspring at 21 days after birth. In general, in the first set, jejunal zinc absorption in the offspring of EG and EFG groups showed a gradual increase along with increased perfusion time at all assayed concentrations. Jejunal zinc absorption expressed as nmol/intestinal surface was higher in the ethanol-folic acid group than in ethanol animals at all assayed concentrations except at 25 microM concentration. In the second set of experiments, distal ileum zinc absorption in the offspring of ethanolfolic acid dams showed a significant increase at all concentrations tested. These results indicate that supplementation of folic acid and amino acids to dams that consume ethanol during gestation and lactation increase serum and milk zinc levels, although the zinc ingestion is lower. In pups of the supplemented dams, the jejunal and ileal absorption of zinc increased; as a consequence, the serum zinc levels increased. The activity of alcohol dehydrogenase, a metaloenzyme dependent on zinc levels, also increased.  相似文献   

4.
The administration of ethanol as 36% of the total calories in a nutritionally adequate liquid diet for three weeks to male Wistar rats caused a 36% decrease in hepatic vitamin A levels (P less than 0.001) when compared with glucose pair-fed control rats, without affecting serum levels of the vitamin. Simultaneous administration of a synthetic antioxidant, DPPD (N,N'-diphenyl-p-phenylene-diamine) to ethanol-fed rats caused a 73% decrease in the extent of the ethanol induced hepatic vitamin A depletion (P less than 0.001). DPPD administration did not affect weight gain, dietary (and hence ethanol) intake or serum ethanol and vitamin A levels in ethanol-fed rats, nor did it affect hepatic or serum vitamin A levels in pair-fed controls. Increased hepatic catabolism of retinoic acid due to induction of cytochrome P450 by ethanol has been suggested as a mechanism of depletion. In the current study, DPPD administration to ethanol-fed rats did not reverse the ethanol induced increase in microsomal cytochrome P450 concentrations or aniline hydroxylase activity. These findings indicate that the ethanol induced hepatic vitamin A depletion can be largely dissociated from the induction of cytochrome P450. In view of the potent free radical scavenging activity of vitamin A, and the protective effect of DPPD against ethanol induced hepatic loss of the vitamin, this study suggests that increased free radical generation and direct peroxidation of vitamin A may be an important mechanism by which ethanol induced hepatic vitamin A depletion occurs in the rat.  相似文献   

5.
The effects of increasing blood ethanol levels on hepatic metabolism were studied in anesthetized cats whose prior fluid intake contained ethanol for 24 days. A hepatic venous long-circuit technique with an extracorporeal reservoir was used to allow hemodynamic measurements and repeated sampling of arterial, portal, and hepatic venous blood without depletion of blood volume. For ethanol, Vmax was 106 +/- 15 mumol.min-1.100 g-1 liver and Km was 164 +/- 31 microM. A previous study showed that there were no changes in O2 uptake by the liver, suggesting other oxidative processes were suppressed during ethanol metabolism. In this study, proton nuclear magnetic resonance spectroscopy was used to simultaneously screen several plasma metabolites to elucidate other metabolic processes that may be perturbed in the liver during ethanol infusion. Hepatic lactate uptake remained unaltered when ethanol metabolism was less than 0.5 Vmax but was suppressed on an equimolar basis with ethanol metabolism when ethanol metabolism rose above 0.5 Vmax. Thus, lactate oxidation is one process that can be suppressed to allow ethanol oxidation without additional O2 uptake by the liver. In addition, no release of acetate from the liver occurred during ethanol metabolism in these experiments. This surprising finding suggests ethanol metabolism may, under some conditions or in some species, result in fatty acid synthesis rather than acetate release. Eight other major metabolites remained unchanged during ethanol infusion.  相似文献   

6.
Ethanol ingestion is known to interfere with folate absorption and metabolism. A fostering/crossfostering analysis of maternal ethanol exposure effects on jejunum and ileum kinetic parameters in vivo of offspring rat folic acid absorption at 21 days postpartum was carried out. The rats were divided into four groups: CP, control pups; GP, pups exposed to ethanol only during gestation; LP, pups exposed to ethanol only during lactation; GLP, pups exposed to ethanol during gestation and lactation. Jejunal and ileal loop transport studies were performed using in vivo perfusion at a flow rate of 3 ml/min for 5 min. Folic acid concentrations of 0.25, 0.5, 1, 1.5 and 2.5 μm were used. Jejunal and ileal absorption values were determined by the difference between the initial and the final amounts of substrate in the perfusate and expressed as picomoles per square centimeter of intestinal surface every 5 min. The results indicated that ethanol consumption by the dams during gestation and/or lactation led to significant changes in V max, with no significant changes in apparent K m. These findings suggest that exposure to ethanol during gestational and suckling periods leads to a general delay in postnatal body weight and that intestinal folate absorption appears to be upregulated in suckling rats, this effect being higher in the LP group.  相似文献   

7.
8.
L M Kozloff  M Lute    L K Crosby 《Journal of virology》1975,16(6):1391-1400
Two different proteins with high affinities for the pteridine ring of folic acid have been used to determine the location of this portion of the folate molecule in the tail plate of T4D and other T-even bacteriophage particles. The two proteins used were (i) antibody specific for folic acid and (ii) the folate-binding protein from bovine milk. Both proteins were examined for their effect on various intact and incomplete phage particles. Intact T2H was weakly inactivated by the antiserum but not by the milk protein. No other intact T-even phage, including T4D, was affected by these two proteins. When incomplete T4D particles were exposed in an in vitro morphogenesis system, it was found that neither of the two proteins affected either the addition of the long tail fibers to fiberless particles or the addition of tail cores to tail plates. On the other hand, these two proteins specifically blocked the addition of T4D gene 11 product to the bottom of T4D baseplates. After the addition of the gene 11 protein, these two reagents did not inhibit the further addition of the gene 12 protein to the baseplate. It can be concluded that the phage folic acid is a tightly bound baseplate constituent and that the pteridine portion of the folic acid is largely covered by the gene 11 protein.  相似文献   

9.
10.
11.
Translation is carried out by the ribosome and several associated protein factors through three consecutive steps: initiation, elongation, and termination. Termination remains the least understood of them, partly because of the nonuniversality of the factors involved. To get some insights on the evolution of eukaryotic translation termination, we have compared the phylogeny of the release factors eRF1 and eRF3 to that of the elongation factors EF-1alpha and EF-2, with special focus on ciliates. Our results show that these four translation proteins have experienced different modes of evolution. This is especially evident for the EF-1alpha, EF-2, and eRF1 ciliate sequences. Ciliates appear as monophyletic in the EF-2 phylogenetic tree but not in the EF-1alpha and eRF1 phylogenetic trees. This seems to be mainly because of phylogeny reconstruction artifacts (the long-branch attraction) produced by the acceleration of evolutionary rate of ciliate EF-1alpha and eRF1 sequences. Interaction with the highly divergent actin found in ciliates, or on the contrary, loss of interaction, could explain the acceleration of the evolutionary rate of the EF-1alpha sequences. In the case of ciliate eRF1 sequences, their unusually high evolutionary rate may be related to the deviations in the genetic code usage found in diverse ciliates. These deviations involve a relaxation (or even abolition) of the recognition of one or two stop codons by eRF1. To achieve this, structural changes in eRF1 are needed, and this may affect its evolutionary rate. Eukaryotic translation seems to have followed a mosaic evolution, with its different elements governed by different selective pressures. However, a correlation analysis shows that, beneath the disagreement shown by the different translation proteins, their concerted evolution can still be made apparent when they are compared with other proteins that are not involved in translation.  相似文献   

12.
The present study aimed to explore the lactation-induced changes in hepatic gene expression in sows (Sus scrofa) during lactation. Using a porcine whole-genome microarray a total of 632 differentially expressed genes in the liver of lactating compared to non-lactating sows could be identified. Enrichment analysis revealed that the differentially expressed genes were mainly involved in fatty acid metabolism, pyruvate metabolism, glutathione metabolism, glycine, serine and threonine metabolism, citrate cycle, glycerophospholipid metabolism, PPAR signaling, and focal adhesion. The most striking observation with respect to intermediary metabolism was that genes involved in fatty acid catabolism, the catabolism of gluconeogenic amino acids, the citrate cycle and the respiratory chain were up-regulated in the liver of sows during lactation. With respect to immune response, it could be demonstrated that genes encoding acute phase proteins and genes involved in tissue repair were up-regulated and genes encoding adhesion molecules were down-regulated in the liver of sows during lactation. The results indicate that energy-generating pathways and pathways involved in the delivery of gluconeogenic substrates are induced in sow liver during lactation. The alterations of expression of genes encoding proteins involved in immune response suggest that lactation in sows may cause an adaptive immune response that possibly counteracts hepatic inflammation.  相似文献   

13.
Food fortification with folic acid and increased use of vitamin supplements have raised concerns about high folic acid intake. We previously showed that high folic acid intake was associated with hepatic degeneration, decreased levels of methylenetetrahydrofolate reductase (MTHFR), lower methylation potential, and perturbations of lipid metabolism. MTHFR synthesizes the folate derivative for methylation reactions. In this study, we assessed the possibility that high folic acid diets, fed to wild-type and Mthfr+/− mice, could alter DNA methylation and/or deregulate hepatic cholesterol homeostasis. Digital restriction enzyme analysis of methylation in liver revealed DNA hypomethylation of a CpG in the lipolysis-stimulated lipoprotein receptor (Lsr) gene, which is involved in hepatic uptake of cholesterol. Pyrosequencing confirmed this methylation change and identified hypomethylation of several neighboring CpG dinucleotides. Lsr expression was increased and correlated negatively with DNA methylation and plasma cholesterol. A putative binding site for E2F1 was identified. ChIP-qPCR confirmed reduced E2F1 binding when methylation at this site was altered, suggesting that it could be involved in increasing Lsr expression. Expression of genes in cholesterol synthesis, transport or turnover (Abcg5, Abcg8, Abcc2, Cyp46a1, and Hmgcs1) was perturbed by high folic acid intake. We also observed increased hepatic cholesterol and increased expression of genes such as Sirt1, which might be involved in a rescue response to restore cholesterol homeostasis. Our work suggests that high folic acid consumption disturbs cholesterol homeostasis in liver. This finding may have particular relevance for MTHFR-deficient individuals, who represent ~10% of many populations.  相似文献   

14.
Folic acid supplementation may prevent the development of cancer in normal tissues but may promote the progression of established (pre)neoplastic lesions. However, whether or not folic acid supplementation can promote the progression of established (pre)neoplastic mammary lesions is unknown. This is a critically important issue because breast cancer patients and survivors in North America are likely exposed to high levels of folic acid owing to folic acid fortification and widespread supplemental use after cancer diagnosis. We investigated whether folic acid supplementation can promote the progression of established mammary tumors. Female Sprague-Dawley rats were placed on a control diet and mammary tumors were initiated with 7,12-dimethylbenza[a]anthracene at puberty. When the sentinel tumor reached a predefined size, rats were randomized to receive a diet containing the control, 2.5x, 4x, or 5x supplemental levels of folic acid for up to 12 weeks. The sentinel mammary tumor growth was monitored weekly. At necropsy, the sentinel and all other mammary tumors were analyzed histologically. The effect of folic acid supplementation on the expression of proteins involved in proliferation, apoptosis, and mammary tumorigenesis was determined in representative sentinel adenocarcinomas. Although no clear dose-response relationship was observed, folic acid supplementation significantly promoted the progression of the sentinel mammary tumors and was associated with significantly higher sentinel mammary tumor weight and volume compared with the control diet. Furthermore, folic acid supplementation was associated with significantly higher weight and volume of all mammary tumors. The most significant and consistent mammary tumor-promoting effect was observed with the 2.5x supplemental level of folic acid. Folic acid supplementation was also associated with an increased expression of BAX, PARP, and HER2. Our data suggest that folic acid supplementation may promote the progression of established mammary tumors. The potential tumor-promoting effect of folic acid supplementation in breast cancer patients and survivors needs further clarification.  相似文献   

15.
Neural tube defects (NTDs) are the second most common birth defects in the United States. It is well known that folic acid supplementation decreases about 70% of all NTDs, although the mechanism by which this occurs is still relatively unknown. The current theory is that folic acid deficiency ultimately leads to depletion of the methyl pool, leaving critical genes unmethylated, and, in turn, their improper expression leads to failure of normal neural tube development. Recently, new studies in human cell lines have shown that folic acid deficiency and DNA hypomethylation can lead to misexpression of microRNAs (miRNAs). Misexpression of critical miRNAs during neural development may lead to a subtle effect on neural gene regulation, causing the sometimes mild to severely debilitating range of phenotypes exhibited in NTDs. This review seeks to cohesively integrate current information regarding folic acid deficiency, methylation cycles, neural development, and miRNAs to propose a potential model of NTD formation. In addition, we have examined the relevant gene pathways and miRNAs that are predicted to affect them, and based on our investigation, we have devised a basic template of experiments for exploring the idea that miRNA misregulation may be linked to folic acid deficiency and NTDs. genesis 48:282–294, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

16.
A methyl-deficient diet (MD) lacking folic acid and the associated methyl donors choline and methionine, fed to the laboratory rat during the periods of oocyte and embryo development, has been shown to programme glucose metabolism in the offspring. The hepatic proteome of the male offspring of female rats fed MD diets for 3 weeks prior to mating and for the first 5 days of gestation has been examined by 2-dimensional gel electrophoresis. Three groups of differentially abundant proteins associated with energy metabolism, amino acid metabolism and antioxidant defence were identified in the soluble proteins extracted from the liver from the MD offspring at both 6 and 12 months of age. Altered mitochondrial activity in other programming models leads to a similar pattern of differential protein abundance. Two of the differentially abundant proteins were identified as GAPDH and PGK-1 by mass spectrometry. Western blotting showed that there were multiple isoforms of both proteins with similar molecular weights but different isoelectric points. The differentially abundant spots reduced in the MD offspring corresponded to minor isoforms of GAPDH and PGK-1. The levels of PPAR-alpha, SREBP and glucocorticoid receptor mRNAs associated with other models of prenatal programming were unchanged in the MD offspring. The data suggest that a diet deficient in folic acid and associated methyl donors fed during the peri-conception and early preimplantation periods of mammalian development affects mitochondrial function in the offspring and that the posttranslational modification of proteins may be important.  相似文献   

17.
18.
The ribosomal protection proteins (RPPs) mediate the resistance to tetracycline (TC) in Gram-positive and Gram-negative bacteria. The RPPs display sequence similarity to translation elongation factors, EF-G/EF-2 and EF-Tu/EF-1α. To determine the evolutionary origin of the RPPs, we constructed a composite phylogenetic tree of the RPPs, EF-G/EF-2 and EF-Tu/EF-1α. This tree includes two universal trees for the EF-G/EF-2 and EF-Tu/EF-1α, which form clusters corresponding to the respective two groups of proteins from three superkingdoms. The cluster of RPPs was placed at a point between the EF-G/EF-2 and EF-Tu/EF-1α clusters. The branch length (substitutions/site) between the node for the RPP cluster and the primary divergence of the RPPs was statistically shorter than that between the node for this cluster and the primary divergence in the EF-G/EF-2 cluster. This indicates that the RPPs derived through duplication and divergence of the ancient GTPase before the divergence of the three superkingdoms. Furthermore, this suggests the RPPs’ extant function occurred before the streptomycetes that include the TC-producing strains. Therefore, the RPPs evolved independent of the presence of TCs and serve a function other than antibiotic resistance. The RPPs may provide ribosomal protection against other chemical substances in the environment. Reviewing Editor: Dr. Margaret Riley Takeshi Kobayashi, Lisa Nonaka have contributed significantly to the research and preparation of this article.  相似文献   

19.
Acute and chronic treatments of mice with the glutathione-depleting agent, L-buthionine-(SR)-sulfoximine (BSO), impaired the mineralocorticoid receptor (MR)-dependent biological response by inhibiting aldosterone binding. This steroid-binding inhibition was fully reversed when reducing agents were added to kidney cytosol obtained from mice treated for 5 h, but it was only partially reversed in cytosol obtained from mice treated for 10 days. Although the oligomeric structure of the MR-hsp90 heterocomplex was always unaffected, a decreased amount of MR protein was evidenced after the long term treatment. Such a deleterious effect was correlated with a post-translational modification of MR, as demonstrated by an increased level of receptor carbonylation. In addition, a failure at the elongation/termination step was also observed during the receptor translation process in a reticulocyte lysate system. Thus, a high polyribosomes/monomers ratio and both increased proteolysis and decreased ADP-ribosylatable concentration of elongation factor 2 (EF-2) were shown. Importantly, similar observations were also performed in vivo after depletion of glutathione. Notwithstanding the EF-2 functional disruption, not all renal proteins were equally affected as the MR. Interestingly, both EF-2 and MR expressed in old mice were similarly affected as in L-buthionine-(SR)-sulfoximine-treated young mice. We therefore propose that a dramatic depletion of glutathione in kidney cells mimics the cumulative effect of aging which, at the end, may lead to a renal mineralocorticoid dysfunction.  相似文献   

20.
In this study, we applied a quantitative proteomic approach, based on SILAC, to investigate the interactions of coronaviruses with the secretory pathway of the host cell, with the aim to identify host factors involved in coronavirus replication. Comparison of the protein profiles of Golgi-enriched fractions of cells that were either mock infected or infected with mouse hepatitis virus revealed the significant depletion or enrichment of 116 proteins. Although ribosomal/nucleic acid binding proteins were enriched in the Golgi-fractions of mouse hepatitis virus-infected cells, proteins annotated to localize to several organelles of the secretory pathway were overrepresented among the proteins that were depleted from these fractions upon infection. We hypothesized that proteins, of which the abundance or distribution is affected by infection, are likely to be involved in the virus life cycle. Indeed, depletion of a small subset of the affected proteins by using small interfering RNAs identified several host factors involved in coronavirus infection. Transfection of small interfering RNAs targeting either C11orf59 or Golgi apparatus glycoprotein 1 resulted in increased virus replication, whereas depletion of vesicle-trafficking protein vesicle-trafficking protein sec22b enhanced the release of infectious progeny virus. Overexpression of these proteins, on the other hand, had a negative effect on virus replication. Overall, our study shows that the SILAC approach is a suitable tool to study host-pathogen interactions and to identify host proteins involved in virus replication.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号