首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
  • 1 Relating species traits to habitat characteristics can provide important insights into the structure and functioning of stream communities. However, trade‐offs among species traits make it difficult to predict accurately the functional diversity of freshwater communities. Many authors have pointed to the value of working with groups of organisms as similar as possible in terms of relationships among traits and have called for definition of groups of organisms with similar suites of attributes.
  • 2 We used multivariate analyses to examine separately the relationships among 11 biological traits and among 11 ecological traits of 472 benthic macroinvertebrate taxa (mainly genera). The main objective was to demonstrate (1) potential trade‐offs among traits; (2) the importance of the different traits to separate systematic units or functional groupings; and (3) uniform functional groups of taxa that should allow a more effective use of macroinvertebrate biological and ecological traits.
  • 3 We defined eight groups and 15 subgroups according to a biological trait ordination which highlighted size (large to small), reproductive traits (K to r strategists), food (animal to plant material) and feeding habits (predator to scraper and/or deposit feeder) as ‘significant’ factors determining the ordination of taxa. This ordination partly preserved phylogenetic relationships among groups.
  • 4 Seven ecological groups and 13 ecological subgroups included organisms with combinations of traits which should be successively more adequate in habitats from the main channel to temporary waters, and from the crenon to the potamic sections of rivers, and to systems situated outside the river floodplain. These gradients corresponded to a gradual shift from (1) rheophilic organisms that lived in the main channel of cold oligotrophic mountain streams to (2) animals that preferred eutrophic habitats of still or temporary waters in lowlands. The groups with similar ecological traits had a more diverse systematic structure than those with similar biological traits.
  • 5 Monitoring and assessment tools for the management of water resources are generally more effective if they are based on a clear understanding of the mechanisms that lead to the presence or absence of species groups in the environment. We believe that groups with similar relationships among their species traits may be useful in developing tools that measure the functional diversity of communities.
  相似文献   

2.
Geographic range size is the manifestation of complex interactions between intrinsic species traits and extrinsic environmental conditions. It is also a fundamental ecological attribute of species and a key extinction risk correlate. Past research has primarily focused on the role of biological and environmental predictors of range size, but macroecological patterns can also be distorted by human activities. Here, we analyse the role of extrinsic (biogeography, habitat state, climate, human pressure) and intrinsic (biology) variables in predicting range size of the world's terrestrial mammals. In particular, our aim is to compare the predictive ability of human pressure vs. species biology. We evaluated the ability of 19 intrinsic and extrinsic variables in predicting range size for 4867 terrestrial mammals. We repeated the analyses after excluding restricted‐range species and performed separate analyses for species in different biogeographic realms and taxonomic groups. Our model had high predictive ability and showed that climatic variables and human pressures are the most influential predictors of range size. Interestingly, human pressures predict current geographic range size better than biological traits. These findings were confirmed when repeating the analyses on large‐ranged species, individual biogeographic regions and individual taxonomic groups. Climatic and human impacts have determined the extinction of mammal species in the past and are the main factors shaping the present distribution of mammals. These factors also affect other vertebrate groups globally, and their influence on range size may be similar as well. Measuring climatic and human variables can allow to obtain approximate range size estimations for data‐deficient and newly discovered species (e.g. hundreds of mammal species worldwide). Our results support the need for a more careful consideration of the role of climate change and human impact – as opposed to species biological characteristics – in shaping species distribution ranges.  相似文献   

3.
Ecological theory (Southwood, 1977. Journal of Animal Ecology 46: 337–365, 1988. Oikos 52: 3–18; Townsend, 1989. Journal of the North American Benthological Society 8: 36–50; Townsend & Hildrew, 1994. Freshwater Biology 31: 265–275) considers that spatio-temporal variations in habitats act as evolutionary forces on organisms, selecting for traits that maximize fitness. As a consequence, communities developed under same environmental conditions should present the same combination of species bio-ecological characteristics. The objective was to verify, using data from the same biogeographical zone, (1) if there was a unique suite of bio-ecological profiles for reference macrobenthic communities of `comparable' rivers or (2) if the distribution of bio-ecological traits within reference communities was significantly influenced by geology. The variability of 22 bio-ecological traits in 12 different sites was tested to evaluate the potential influence of geological substrate on biological and ecological features of reference stream communities. Observed patterns suggested that communities displayed highly stable bio-ecological profiles among sites (within a given biogeographical zone) whatever the substrate was, even if communities on clayey substrate exhibited slightly different bio/ecological characteristics than on others geologies. Nevertheless, the functional structure of macrobenthic communities in reference sites was quite stable in this biogeographical area. This study was restricted to the selected stream types and its results may not directly be transferred to other biogeographical areas and stream types. However, the perspective of a unique functional reference for streams of the same order in a given biogeographical area, improve functional comparison between observed vs. reference communities. This could simplify and objectively define the ecological status of a given site.  相似文献   

4.
1. Coleoptera species show considerable diversity in life histories and ecological strategies, which makes possible their wide distribution in freshwater habitats, including highly stressed ones such as saline or temporary waterbodies. Explaining how particular combinations of traits allow species to occupy distinctive habitats is a central question in ecology. 2. A total of 212 sites, sampled over a wide range of inland aquatic habitats in the south‐eastern Iberian Peninsula, yielded 272 species belonging to 68 genera and 11 families. The affinities of genera for 11 biological and 11 ecological traits, gathered from literature and the authors’ own expertise, were used to assess the degree of congruence between taxonomic, biological and ecological traits. 3. Taxonomic richness was significantly related to the number of both biological and ecological trait categories, with the richest families also showing the highest functional and ecological diversity. A fuzzy correspondence analysis performed on the abundance‐weighed array of biological traits separated genera according to categories of diet, feeding habits, respiration, reproduction and locomotion. A similar analysis of ecological traits revealed that preferences related to longitudinal distribution (headwater to mouth), local habitat and current velocity best discriminated genera. At the family level, there was a distinctive functional grouping of genera based on biological traits. Only Elmidae showed noticeable homogeneity across genera for both biological and ecological traits. 4. Co‐inertia analysis demonstrated a significant match between biological and ecological traits (Rv‐correlation = 0.35, P < 0.001). Elmidae genera displayed the highest concordance, whereas Hydraenidae demonstrated the lowest. 5. These results indicate that the predominance of habitat filtering processes in headwater streams yields biological trait conservatism (as shown by Elmidae genera), as well as trait convergence for some specific traits (for instance, respiration) among certain Dytiscidae genera and other typical rheophilic taxa, whereas other biotic factors, such as competition among species, appear more prominent in less stressed habitats. Further knowledge of traits, especially regarding physiological capabilities, is needed to better understand water beetle life history strategies.  相似文献   

5.
Plant invasions cause biodiversity loss and degradation in ecosystems worldwide. The invasive species involved may be introduced, or native invaders, and controlling them is a major global challenge. Here, we highlight an emerging role for native parasitic plants in suppressing invasive species, thus aiding in restoration of affected habitats. Compelling empirical evidence is provided by three study systems located in Central Europe, southern Australia and eastern China. Further cases of parasitism of invasive plants have been recorded across five continents. We propose including the interactions between parasitic and invasive plants into the theoretical framework of the biotic resistance hypothesis concerning generalist interactions between invaders and native biota. Among parasitic plants, numerous root hemiparasites, mistletoes and parasitic vines show low host specificity and exert substantial negative effects on their hosts. These parasitic plants may interfere with key traits of invaders such as symbiotic nitrogen fixation or clonal propagation which provide them with competitive advantage over native species. We contend that some parasitic plants may present a cost‐effective environmentally sustainable component of invasion management schemes. Therefore, we encourage exploration of this potential and the development of methods for practical applications in ecological restoration and nature conservation.  相似文献   

6.
Ecological Restoration and NonIndigenous Plant Species: A Review   总被引:5,自引:0,他引:5  
In ecological restoration, nonindigenous species can pose a major problem because they are often aggressive and can overwhelm native species, thus altering ecosystem structure. This article identifies the circumstances in which prospects for use of restoration technology in controlling invaders are favorable or unfavorable, the factors that make certain species good colonizers, and the characteristics that make ecosystems susceptible to invasion. It discusses prospects for using restoration technology in controlling nonindigenous species by influencing hydroperiod, photo-period, thermoperiod, edaphic conditions, and availability of biological control agents so as to produce ecological conditions that are inhospitable to invaders. The limitations of restoration are discussed, as well as specific ecological situations in which it is likely to be the method of choice for control of nonindigenous species. Use of fire, flooding, manual removal, shading, substrate removal, and herbicide application as control techniques in conjunction with restoration efforts are considered. Specific examples, including the techniques employed, indicate the potential for controlling nonindigenous species in the process of ecosystem restoration.  相似文献   

7.
Prior studies on the latitudinal extent and ecological impact of exotic plant species suggest that areas of high diversity, such as the Neotropics, may be relatively 'resistant' to invasions. To explore the generality of this assertion and assess the impact of alien species on continental tropical faunas, I compiled data for threatened Neotropical animals from the red data books of Bolivia, Brazil, Minas Gerais (a Brazilian state), Peru, and Venezuela. A total of 378 species (including both vertebrates and invertebrates) were considered. For each taxon, I recorded whether it is threatened by habitat conversion, overexploitation, and/or exotic species. As suggested by other researchers, exotic species introductions appear to be relatively unimportant in South America, threatening only 6% of animal taxa. However, many South American animals are themselves either recent invaders or survivors of the Great American Biotic Interchange (GABI) which began during the Pliocene. Here, I hypothesize that the GABI may have acted as an 'extinction filter', leaving faunal groups of mostly South American origin relatively more threatened by the current wave of exotic invaders than those with prominent North American representation. The data support this prediction. For taxa whose current diversity patterns were not strongly influenced by the GABI, exotic species are indeed an important threat. For example, alien invaders threaten 29% of continental fishes and 30% of amphibians, figures comparable to those recorded in temperate areas. As more information on these less-studied taxa becomes available, the magnitude of the threat posed by exotic species introductions will probably reveal itself to be large. Of critical importance is to assess the impact of invasions on biological realms that have only been recently exposed to alien taxa, such as the aquatic faunas of the numerous drainages that occur along the eastern and western slopes of the South American Andes. The results of these investigations provide predictions for similar research focussed on other continental tropical regions of the world.  相似文献   

8.
Aim To test whether the distribution of alien bird impacts varies across bird families and regions of origin, and to investigate whether species traits associated with successful introductions can predict which species will have negative impacts in the new area of introduction. Location Europe and the Mediterranean Basin. Methods Combining historical information and published literature about negative economic, biological and human health impacts, we compared the distribution of impacts among bird families and native origins of bird species for three major types of impact (economic, biodiversity and human health). We examined the relationships between ecological, biological and reproductive characteristics of species and the severity of the impacts. Results The majority of alien species with reported impacts originated from the Afrotropical, Indo‐Malayan and Palaearctic biogeographical regions. The distribution of alien bird species in Europe with reported impacts shows a taxonomic bias and largely mirrors patterns of establishment. While most species had primarily either economic or biodiversity impacts, several species in the Anatidae, Corvidae, Passeridae, Phasianidae and Sturnidae families were associated with moderate to serious negative impacts on both economic resources and native biodiversity. After controlling for taxonomic effects, species with the greatest overall impacts were habitat generalists and multi‐brooded, while species with smaller bodies and the tendency to form large feeding or roosting flocks were linked with greater impacts on native biodiversity. Main conclusions This study presents the first synthesis of published impact data for alien birds and provides a broad‐scale perspective on factors that contribute to their impacts. The results show that accounting for both species traits and taxonomy improves our ability to predict the impacts of alien bird species. Because several species are currently in the early stages of establishment in Europe, there may be an opportunity to limit negative impacts with efforts that promote proactive strategies against species and families possessing the above characteristics.  相似文献   

9.
Aim Recent works have found the presence of native congeners to have a small effect on the naturalization rates of introduced plants, some suggesting a negative interaction (as proposed by Charles Darwin in The Origin of Species), and others a positive association. We assessed this question for a new biogeographic region, and discuss some of the problems associated with data base analyses of this type. Location Islands of the Mediterranean basin. Methods Presence or absence of congeners was assessed for all naturalized alien plants species at regional, local and habitat scales. Using general linear models, we attempted to explain the abundance of the species (as measured by the number of islands where recorded) from their congeneric status, and assessed whether the patterns could be alternatively accounted for by a range of biological, geographical and anthropogenic factors. A simulation model was also used to investigate the impact of a simple bias on a comparable but hypothetical data set. Results Data base analyses addressing Darwin's hypothesis are prone to bias from a number of sources. Interaction between invaders and congenerics may be overestimated, as they often do not co‐occur in the same habitats. Furthermore, intercorrelations between naturalization success and associated factors such as introduction frequency, which are also not independent from relatedness with the native flora, may generate an apparent influence of congenerics without implying a biological interaction. We detected no true influence from related natives on the successful establishment of alien species of the Mediterranean. Rarely‐introduced species tended to fare better in the presence of congeners, but it appears that this effect was generated because species introduced accidentally into highly invasible agricultural and ruderal habitats have many relatives in the region, due to common evolutionary origins. Main conclusions Relatedness to the native flora has no more than a marginal influence on the invasion success of alien plants in the Mediterranean, although apparent trends can easily be generated through artefacts of the data base.  相似文献   

10.
Oceanic islands have long been considered to be particularly vulnerable to biotic invasions, and much research has focused on invasive plants on oceanic islands. However, findings from individual islands have rarely been compared between islands within or between biogeographic regions. We present in this study the most comprehensive, standardized dataset to date on the global distribution of invasive plant species in natural areas of oceanic islands. We compiled lists of moderate (5–25% cover) and dominant (>25% cover) invasive plant species for 30 island groups from four oceanic regions (Atlantic, Caribbean, Pacific, and Western Indian Ocean). To assess consistency of plant behaviour across island groups, we also recorded present but not invasive species in each island group.We tested the importance of different factors discussed in the literature in predicting the number of invasive plant species per island group, including island area and isolation, habitat diversity, native species diversity, and human development. Further we investigated whether particular invasive species are consistently and predictably invasive across island archipelagos or whether island-specific factors are more important than species traits in explaining the invasion success of particular species.We found in total 383 non-native spermatophyte plants that were invasive in natural areas on at least one of the 30 studied island groups, with between 3 and 74 invaders per island group. Of these invaders about 50% (181 species) were dominants or co-dominants of a habitat in at least one island group. An extrapolation from species accumulation curves across the 30 island groups indicates that the total current flora of invasive plants on oceanic islands at latitudes between c. 35°N and 35°S may eventually consist of 500–800 spermatophyte species, with 250–350 of these being dominant invaders in at least one island group. The number of invaders per island group was well predicted by a combination of human development (measured by the gross domestic product (GDP) per capita), habitat diversity (number of habitat types), island age, and oceanic region (87% of variation explained). Island area, latitude, isolation from continents, number of present, non-native species with a known invasion history, and native species richness were not retained as significant factors in the multivariate models.Among 259 invaders present in at least five island groups, only 9 species were dominant invaders in at least 50% of island groups where they were present. Most species were invasive only in one to a few island groups although they were typically present in many more island groups. Consequently, similarity between island groups was low for invader floras but considerably higher for introduced (but not necessarily invasive) species – especially in pairs of island groups that are spatially close or similar in latitude. Hence, for invasive plants of natural areas, biotic homogenization among oceanic islands may be driven by the recurrent deliberate human introduction of the same species to different islands, while post-introduction processes during establishment and spread in natural areas tend to reduce similarity in invader composition between oceanic islands. We discuss a number of possible mechanisms, including time lags, propagule pressure, local biotic and abiotic factors, invader community assembly history, and genotypic differences that may explain the inconsistent performance of particular invasive species in different island groups.  相似文献   

11.
The impact of invasion on diversity varies widely and remains elusive. Despite the considerable attempts to understand mechanisms of biological invasion, it is largely unknown whether some communities’ characteristics promote biological invasion, or whether some inherent characteristics of invaders enable them to invade other communities. Our aims were to assess the impact of one of the massive plant invaders of Scandinavia on vascular plant species diversity, disentangle attributes of invasible and noninvasible communities, and evaluate the relationship between invasibility and genetic diversity of a dominant invader. We studied 56 pairs of Heracleum persicum Desf. ex Fisch.‐invaded and noninvaded plots from 12 locations in northern Norway. There was lower native cover, evenness, taxonomic diversity, native biomass, and species richness in the invaded plots than in the noninvaded plots. The invaded plots had nearly two native species fewer than the noninvaded plots on average. Within the invaded plots, cover of H. persicum had a strong negative effect on the native cover, evenness, and native biomass, and a positive association with the height of the native plants. Plant communities containing only native species appeared more invasible than those that included exotic species, particularly H. persicum. Genetic diversity of H. persicum was positively correlated with invasibility but not with community diversity. The invasion of a plant community by H. persicum exerts consistent negative pressure on vascular plant diversity. The lack of positive correlation between impacts and genetic diversity of H. persicum indicates that even a small founder population may cause high impact. We highlight community stability or saturation as an important determinant of invasibility. While the invasion by H. persicum may decrease susceptibility of a plant community to further invasion, it severely reduces the abundance of native species and makes them more vulnerable to competitive exclusion.  相似文献   

12.
Biological invasions dramatically affect the distribution, abundance and reproduction of many native species. Because of these ecological effects, exotic species can also influence the evolution of natives exposed to novel interactions with invaders. Evolutionary changes in natives in response to selection from exotics are usually overlooked, yet common responses include altered anti-predator defenses, changes in the spectrum of resources and habitats used, and other adaptations that allow native populations to persist in invaded areas. Whether a native population is capable of responding evolutionarily to selection from invaders will depend on the demographic impact of the invader, the genetic architecture and genetic variability of the native population and potentially the history of previous invasions. In some cases, natives will fail to evolve or otherwise adapt, and local or global extinction will result. In other cases, adaptive change in natives may diminish impacts of invaders and potentially promote coexistence between invaders and natives. Here, we review the evidence for evolutionary responses of native species to novel community members. We also discuss how the effects of introduced species may differ from those caused by natural range expansions of native species. Notably, introduced species may come from remote biotas with no previous evolutionary history with the native community. In addition, the rate of addition of introduced species into communities is much greater than all but the most extreme cases of historical biotic exchange. Understanding the evolutionary component of exotic/native species interactions is critical to recognizing the long-term impacts of biological invasions, and to understanding the role of evolutionary processes in the assembly and dynamics of natural communities.  相似文献   

13.
Freshwater biodiversity is threatened by several mechanisms, of which the introduction of non-indigenous species and habitat alteration are the two most important. Exotic species act at various levels of organisation of macroinvertebrate communities, and are involved in different processes mediating their impacts on biodiversity, such as habitat modification or negative interactions with autochthonous fauna. The present work gives a list of the 43 French freshwater non-indigenous species, which represent 1.2% of the French freshwater macroinvertebrates. We provide their geographic origins, their distributions among zoological units by comparison with the native fauna and their functional characteristics according to a recent typology based on bio/ecological traits. An exponential trend of the cumulated number of non-indigenous species was evidenced, with a clumping of invaders within crustaceans and molluscs. Donor areas of non-indigenous species are in majority European, and the Ponto-Caspian basin is identified as the principal one. This pattern could be explained by a spread along waterways but its origin lies in a process of recolonisation of defaunated areas following several episodes of glaciation/deglaciation in Western Europe during the last 80,000 years. Finally, from a functional point of view, non-indigenous species exhibit a limited diversity, with two functional groups representing 80% of them.  相似文献   

14.
中国农业生态系统外来种入侵及其管理现状   总被引:1,自引:0,他引:1  
农业生态系统极易遭受外来生物入侵。作者根据文献资料和多年工作观察统计出入侵我国农业生态系统的外来生物共计92科175属239种, 其中植物155种, 动物55种, 微生物29种, 植物多为有意引入后逸生, 而动物和微生物则主要是无意引入。外来入侵种发生数量呈现从南到北、从东到西逐渐减少的趋势。这些入侵种中, 来源于美洲的最多(占45.04%), 其次是欧洲(22.90%); 菜地(包括温室大棚)和果园入侵种最多, 分别达64.85%和66.53%, 而半年期的秋熟旱地和夏熟旱地分别占34.31%和23.85%。其中17种外来杂草、10种害虫、7种病原菌为恶性有害生物, 应作为防除的重点目标。目前农业生态系统外来入侵物种的控制以化学防治为主, 但由于长期施用化学农药, 在侵入我国农田的入侵种中, 已有51种在世界不同地区演化出抗药性生物型, 因而需重视生物防治、农业和生态防治以及检疫等的综合应用。今后外来种对农业生态系统的入侵格局、机制和趋势, 入侵途径以及生物入侵和抗药性生物型对农业生态系统中有害生物群落演替的影响、转基因作物导致的生物入侵等问题值得关注。  相似文献   

15.
Attempts to investigate the drivers of invasion success are generally limited to the biological and evolutionary traits distinguishing native from introduced species. Although alien species introduced to the same recipient environment differ in their invasion intensity – for example, some are “strong invaders”; others are “weak invaders” – the factors underlying the variation in invasion success within alien communities are little explored. In this study, we ask what drives the variation in invasion success of alien mammals in South Africa. First, we tested for taxonomic and phylogenetic signal in invasion intensity. Second, we reconstructed predictive models of the variation in invasion intensity among alien mammals using the generalized linear mixed‐effects models. We found that the family Bovidae and the order Artiodactyla contained more “strong invaders” than expected by chance, and that such taxonomic signal did not translate into phylogenetic selectivity. In addition, our study indicates that latitude, gestation length, social group size, and human population density are only marginal determinant of the variation in invasion success. However, we found that evolutionary distinctiveness – a parameter characterising the uniqueness of each alien species – is the most important predictive variable. Our results indicate that the invasive behavior of alien mammals may have been “fingerprinted” in their evolutionary past, and that evolutionary history might capture beyond ecological, biological and life‐history traits usually prioritized in predictive modeling of invasion success. These findings have applicability to the management of alien mammals in South Africa.  相似文献   

16.
Compartmentalization—the organization of ecological interaction networks into subsets of species that do not interact with other subsets (true compartments) or interact more frequently among themselves than with other species (modules)—has been identified as a key property for the functioning, stability and evolution of ecological communities. Invasions by entomophilous invasive plants may profoundly alter the way interaction networks are compartmentalized. We analysed a comprehensive dataset of 40 paired plant–pollinator networks (invaded versus uninvaded) to test this hypothesis. We show that invasive plants have higher generalization levels with respect to their pollinators than natives. The consequences for network topology are that—rather than displacing native species from the network—plant invaders attracting pollinators into invaded modules tend to play new important topological roles (i.e. network hubs, module hubs and connectors) and cause role shifts in native species, creating larger modules that are more connected among each other. While the number of true compartments was lower in invaded compared with uninvaded networks, the effect of invasion on modularity was contingent on the study system. Interestingly, the generalization level of the invasive plants partially explains this pattern, with more generalized invaders contributing to a lower modularity. Our findings indicate that the altered interaction structure of invaded networks makes them more robust against simulated random secondary species extinctions, but more vulnerable when the typically highly connected invasive plants go extinct first. The consequences and pathways by which biological invasions alter the interaction structure of plant–pollinator communities highlighted in this study may have important dynamical and functional implications, for example, by influencing multi-species reciprocal selection regimes and coevolutionary processes.  相似文献   

17.
1. Occupancy frequency distributions (OFDs) are one means to study species distribution patterns, allowing the delineation of rare and common species. Very few studies have deconstructed entire assemblages by ecological or biological characteristics and subsequently examined OFDs in subgroups of species. 2. The effect of deconstruction of entire assemblages by niche breadth, niche position or body size classes on OFDs in stream insects in three drainage basins was examined. It was hypothesized that OFDs should not vary between different drainage basins, but they should be affected by deconstruction into different niche breadth, niche position or body size classes. 3. The OFDs were typically strongly right‐skewed in all drainage basins. The set of small‐sized species was strongly dominated by rare species, whereas the importance of rare species decreased with increasing body size. Further, while the OFDs of sets of species with marginal niche position or small niche breadth were strongly dominated by rare species, those of species with non‐marginal niche position or large niche breadth showed highly variable degrees of occupancy. The OFDs of non‐marginal species were even uniform in the entire data and one drainage basin, providing partial support to the a priori hypothesis. 4. Niche‐based explanations are likely to account for occupancies of marginal and small‐niched species, whereas the distributions of non‐marginal and broad‐niched species may be not only affected by niche‐based mechanisms but also by spatial dynamics. Deconstruction of OFDs by ecological and biological traits thus showed that the patterns may vary between different subgroups of species.  相似文献   

18.
1. Current budgets for environmental management are high, tend to increase, and are used to support policy and legislation which is standardized for large geographic units. Therefore, the search for tools to monitor the effects of this investment is a major issue in applied ecology. Ideally, such a biomonitoring tool should: (1) be as general as possible with respect to its geographic application; (2) be as specific as possible by separating different types of human impact on a given ecosystem; (3) reliably indicate changes in human impact of a particular type; and (4) be derived from a sound theoretical concept in ecology. 2. We developed an approach to biomonitoring which matches these ‘ideal’ characteristics by focusing on numerous, general biological species traits (e.g. size, number of descendants per reproductive cycle, parental care, mobility) and on the habitat templet concept, which relates trends in these general species traits to disturbance patterns. Using the French Rhône River and benthic macroinvertebrates as an example, we have used the data to demonstrate a general framework and the potential of our approach rather than to produce a ready-made tool. Our data covered a large river and its major tributaries, which has a catchment that crosses ecoregions, and known gradients and discontinuities in human impact. 3. We applied multivariate analyses to evaluate how the distribution of species traits in invertebrate communities could discriminate environmental differences along the Rhône in comparison to traditionally used approaches (e.g. community structure, based on species abundances, or ecological species traits, such as velocity preferences and pollution tolerance). Invertebrate community structure expressed in terms either of the abundance or the traits of species reliably indicated differences in overall human impact. The community structure based on biological traits was less confounded by natural spatial gradients and reliably indicated human impact, while community structure based on ecological traits was the most confounded by natural spatial gradients and was the poorest indicator of human impact. Community structure based on species abundances was an intermediate indicator of human impact. 4. These results indicate that a revision of biomonitoring approaches which have been based on a single aspect of the biological responses may be warranted. The biological traits of species could separate the different types of human impact. Therefore, the use of these traits in biomonitoring could improve existing multi-metric approaches. Future research has to show if the general applicability of species traits allows the development of a unique biomonitoring tool for running waters of the European Union, for running waters in temperate climates on several continents, for freshwater, marine and terrestrial systems, and/or for global biodiversity assessment.  相似文献   

19.
Climate change and biological invasions are rapidly reshuffling species distribution, restructuring the biological communities of many ecosystems worldwide. Tracking these transformations in the marine environment is crucial, but our understanding of climate change effects and invasive species dynamics is often hampered by the practical challenge of surveying large geographical areas. Here, we focus on the Mediterranean Sea, a hot spot for climate change and biological invasions to investigate recent spatiotemporal changes in fish abundances and distribution. To this end, we accessed the local ecological knowledge (LEK) of small‐scale and recreational fishers, reconstructing the dynamics of fish perceived as “new” or increasing in different fishing areas. Over 500 fishers across 95 locations and nine different countries were interviewed, and semiquantitative information on yearly changes in species abundance was collected. Overall, 75 species were mentioned by the respondents, mostly warm‐adapted species of both native and exotic origin. Respondents belonging to the same biogeographic sectors described coherent spatial and temporal patterns, and gradients along latitudinal and longitudinal axes were revealed. This information provides a more complete understanding of the shifting distribution of Mediterranean fishes and it also demonstrates that adequately structured LEK methodology might be applied successfully beyond the local scale, across national borders and jurisdictions. Acknowledging this potential through macroregional coordination could pave the way for future large‐scale aggregations of individual observations, increasing our potential for integrated monitoring and conservation planning at the regional or even global level. This might help local communities to better understand, manage, and adapt to the ongoing biotic transformations driven by climate change and biological invaders.  相似文献   

20.
Relatively easy measurable patch characteristics (especially habitat diversity measures) have proven to be valuable indicators of forest plant species richness in forest fragments of relatively undisturbed areas. Urban and suburban forest patches, however, are characterized by a specific landscape ecological context implying that specific processes may influence ecosystem functioning and hence that other abiotic indicators for plant diversity are more appropriate. We studied the relation between functional ecological plant species groups and suburban forest patch characteristics such as patch area, habitat diversity and isolation. Some components of species richness were related to the isolation of the patches. In contrast to previous similar large-scale fragmentation studies in more rural areas, further results stressed the overwhelming importance of patch area relative to habitat variables in determining species richness. This suggests (1) the occurrence of density-dependent species extinction processes in small forest patches; or (2) the existence of external deterministic factors which put a major constraint on species richness in small patches. We tend to support the latter hypothesis and propose forest disturbance and associated black cherry (Prunus serotina Ehrh.) invasion as such a possible external factor. Small forest patches may be more sensitive to disturbance and biological invasion due to various reasons. Hence large forest patches are to be preferred for plant conservation in the suburban area.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号