首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 34 毫秒
1.
Thrombin-activable fibrinolysis inhibitor (TAFI) is a zymogen that inhibits the amplification of plasmin production when converted to its active form (TAFIa). TAFI is structurally very similar to pancreatic procarboxypeptidase B. TAFI also shares high homology in zinc binding and catalytic sites with the second basic carboxypeptidase present in plasma, carboxypeptidase N. We investigated the effects of altering residues involved in substrate specificity to understand how they contribute to the enzymatic differences between TAFI and carboxypeptidase N. We expressed wild type TAFI and binding site mutants in 293 cells. Recombinant proteins were purified and characterized for their activation and enzymatic activity as well as functional activity. Although the thrombin/thrombomodulin complex activated all the mutants, carboxypeptidase B activity of the activated mutants against hippuryl-arginine was reduced. Potato carboxypeptidase inhibitor inhibited the residual activity of the mutants. The functional activity of the mutants in a plasma clot lysis assay correlated with their chromogenic activity. The effect of the mutations on other substrates depended on the particular mutation, with some of the mutants possessing more activity against hippuryl-His-leucine than wild type TAFIa. Thus mutations in residues around the substrate binding site of TAFI resulted in altered C-terminal substrate specificity.  相似文献   

2.
The three-dimensional structure of human procarboxypeptidase A2 has been determined using X-ray crystallography at 1.8 A resolution. This is the first detailed structural report of a human pancreatic carboxypeptidase and of its zymogen. Human procarboxypeptidase A2 is formed by a pro-segment of 96 residues, which inhibits the enzyme, and a carboxypeptidase moiety of 305 residues. The pro-enzyme maintains the general fold when compared with other non-human counterparts. The globular part of the pro-segment docks into the enzyme moiety and shields the S2-S4 substrate binding sites, promoting inhibition. Interestingly, important differences are found in the pro-segment which allow the identification of the structural determinants of the diverse activation behaviours of procarboxypeptidases A1, B and A2, particularly of the latter. The benzylsuccinic inhibitor is able to diffuse into the active site of procarboxypeptidase A2 in the crystals. The structure of the zymogen-inhibitor complex has been solved at 2.2 A resolution. The inhibitor enters the active site through a channel formed at the interface between the pro-segment and the enzyme regions and interacts with important elements of the active site. The derived structural features explain the intrinsic activity of A1/A2 pro-enzymes for small substrates.  相似文献   

3.
Bovine procarboxypeptidase A displays substantial catalytic activity toward halogenated acyl-amino acids, the most active of which is trifluoroacetyl-L-phenylalanine (TFAc-L-Phe). Though this activity is not as great as for the native enzyme, it is quite substantial and far beyond the range of adventitious activation. Both DL-benzylcuccinate and beta-phenylpropionate inhibit zymogen hydrolysis of TFAc-L-Phe, the former with a K1 of 4.1 micrometer and the latter, 900 micrometer (a value much higher than the corresponding enzyme). Apo procarboxypeptidase A will also hydrolyze TFAc-L-Phe, presumably the polarization of the carbonyl carbon being accomplished by the fluorine atoms in the absence of a specific metal ion. That this is not entirely the metal ion function is indicated by the fact that rate enhancements follow the order manganese procarboxypeptidase A approximately zinc procarboxypeptidase greater than apo-procarboxypeptidase. The results indicate considerable similarities for the zymogen-enzyme pair in terms of catalytic groups, pH dependence, specificity and the nature of their transition state binding sites. Some changes in the substrate or inhibitor binding sites are noted.  相似文献   

4.
The amino acid sequence of rat mast cell carboxypeptidase has been determined. The major form has 308 residues; a minor form has an additional (glutamyl) residue at the amino terminus that may indicate an alternate cleavage site during zymogen activation. The enzyme is homologous to pancreatic carboxypeptidases A and B, with conservation of the functional amino acid residues of the active site. The putative substrate binding site resembles that of carboxypeptidase A, although other structural features bear more similarity to carboxypeptidase B. Mast cell carboxypeptidase retains enzymatic activity toward a peptide substrate (angiotensin I) while bound within the granular matrix of the rat connective tissue mast cells. Evidence is presented to suggest that a cluster of positively charged lysyl and arginyl residues binds the enzyme to the negatively charged heparin of the granular matrix but leaves the active site exposed to bind and cleave peptide substrates.  相似文献   

5.
Procarboxypeptidase B is converted to enzymatically active carboxypeptidase B by limited proteolysis catalysed by trypsin, removing the long N-terminal activation segment of 95 amino acids. The three-dimensional crystal structure of procarboxypeptidase B from porcine pancreas has been determined at 2.3 A resolution and refined to a crystallographic R-factor of 0.169. The functional determinants of its enzymatic inactivity and of its activation by limited proteolysis have thus been unveiled. The activation segment folds in a globular region with an open sandwich antiparallel-alpha antiparallel-beta topology and in a C terminal alpha-helix which connects it to the enzyme moiety. The globular region (A7-A82) shields the preformed active site, and establishes specific interactions with residues important for substrate recognition. AspA41 forms a salt bridge with Arg145, which in active carboxypeptidase binds the C-terminal carboxyl group of substrate molecules. The connecting region occupies the putative extended substrate binding site. The scissile peptide bond cleaved by trypsin during activation is very exposed. Its cleavage leads to the release of the activation segment and to exposure of the substrate binding site. An open-sandwich folding has been observed in a number of other proteins and protein domains. One of them is the C-terminal fragment of L7/L12, a ribosomal protein from Escherichia coli that displays a topology similar to the activation domain of procarboxypeptidase.  相似文献   

6.
A novel plasminogen-binding protein has been isolated from human plasma utilizing plasminogen-Sepharose affinity chromatography. This protein copurified with alpha 2 antiplasmin when the plasminogen affinity column was eluted with high concentrations of epsilon-aminocaproic acid (greater than 20 mM). Analysis by sodium dodecyl sulfate suggests this protein has an apparent Mr of 60,000. The amino-terminal amino acid sequence showed no similarity to other protein sequences. Based on the amino-terminal amino acid sequence, oligonucleotide probes were designed for polymerase chain reaction primers, and an approximately 1,800 base pair cDNA was isolated that encodes this Mr 60,000 protein. The deduced amino acid sequence reveals a primary translation product of 423 amino acids that is very similar to carboxypeptidase A and B and consists of a 22-amino acid signal peptide, a 92-amino acid activation peptide, and a 309-amino acid catalytic domain. This protein shows 44 and 40% similarity to rat procarboxypeptidase B and human mast cell procarboxypeptidase A, respectively. The residues critical for catalysis and zinc and substrate binding of carboxypeptidase A and B are conserved in the Mr 60,000 plasminogen-binding protein. The presence of aspartic acid at position 257 of the catalytic domain suggests that this protein is a basic carboxypeptidase. When activated by trypsin, it hydrolyzes carboxypeptidase B substrates, hippuryl-Arg and hippuryl-Lys, but not carboxypeptidase A substrates, and it is inhibited by the specific carboxypeptidase B inhibitor (DL-5-guanidinoethyl)mercaptosuccinic acid. We propose that the Mr 60,000 plasminogen-binding protein isolated here is a novel human plasma carboxypeptidase B and that it be designated pCPB.  相似文献   

7.
Porcine pancreatic procarboxypeptidase A and its tryptic peptides, carboxypeptidase A and the activation segment, have been studied by high-sensitivity differential scanning calorimetry (DSC). The thermal denaturation of the zymogen and the active enzyme has been carried out at two pH values, 7.5 and 9.0, at different ionic strengths and at different scan rates. The endothermic transitions for these two proteins were always irreversible under all conditions investigated. The denaturation behaviour of both proteins seems to fit very well with the kinetic model for the DSC study of irreversible unfolding of proteins recently proposed by one of our groups. From this model, the activation energies obtained for the denaturation of the pro- and carboxypeptidase were 300 +/- 20 kJ mol-1 and 250 +/- 14 kJ mol-1 respectively. On the other hand, the isolated activation segment appears as a thermostable piece with a highly reversible thermal unfolding which follows a two-state process. The denaturation temperature observed for the isolated segment was always at least 15 K higher than those of the zymogen and the active enzyme.  相似文献   

8.
The proteolytic processing of pancreatic procarboxypeptidase B to a mature and functional enzyme is much faster than that of procarboxypeptidase A1. This different behavior has been proposed to depend on specific conformational features at the region that connects the globular domain of the pro-segment to the enzyme and at the contacting surfaces on both moieties. A cDNA coding for porcine procarboxypeptidase B was cloned, sequenced, and expressed at high yield (250 mg/liter) in the methylotrophic yeast Pichia pastoris. To test the previous hypothesis, different mutants of the pro-segment at the putative tryptic targets in its connecting region and at some of the residues contacting the active enzyme were obtained. Moreover, the complete connecting region was replaced by the homologous sequence in procarboxypeptidase A1. The detailed study of the tryptic processing of the mutants shows that limited proteolysis of procarboxypeptidase B is a very specific process, as Arg-95 is the only residue accessible to tryptic attack in the proenzyme. A fast destabilization of the connecting region after the first tryptic cut allows subsequent proteolytic processing and the expression of carboxypeptidase B activity. Although all pancreatic procarboxypeptidases have a preformed active site, only the A forms show intrinsic activity. Mutational substitution of Asp-41 in the globular activation domain, located at the interface with the enzyme moiety, as well as removal of the adjacent 310 helix allow the appearance of residual activity in the mutated procarboxypeptidase B, indicating that the interaction of both structural elements with the enzyme moiety prevents the binding of substrates and promotes enzyme inhibition. In addition, the poor heterologous expression of such mutants indicates that the mutated region is important for the folding of the whole proenzyme.  相似文献   

9.
The three-dimensional structure of procarboxypeptidase A (PCPA) from porcine pancreas has been determined at 2 A resolution and refined to a crystallographic R-factor of 0.198, with a root-mean-square deviation from ideal values for bond lengths of 0.015 A and for angles of 2.1 degrees. It is compared with procarboxypeptidase B (PCPB) from the same tissue. The 94/95 residue activation segments of PCPA/PCPB have equivalent folds: an N-terminal globular region with an open sandwich antiparallel alpha/antiparallel beta topology, followed by an extended alpha-helical segment, the connection to the enzyme. Alignment of the secondary structures of the activation segments of PCPA and PCPB (residues A1 to A99) indicates a two residue insertion between residues A34 and A35 and a C-terminal helix that is two turns longer in PCPA compared to PCPB. A deletion is observed between residues A43 to A45, the region containing the short 3(10) helix that covers the active site in PCPB. The globular region (A4 to A80) shields the preformed active center of carboxypeptidase A (CPA), but none of the residues involved in catalysis makes direct contacts with the activation segment. In contrast, subsites S2, S3 and S4 of the enzyme, involved in the binding of peptidic substrates, are blocked by specific contacts with residues AspA36, TrpA38, ArgA47, AspA53 and GluA86 of the activation segment. It has been described that several residues of CPA exhibit different conformations in the free enzyme compared to when substrate is bound: Arg127, Arg145, Glu270 and Tyr248. In PCPA all of these residues are found in the "active" conformation, as if substrate were actually bound. The presence of a ligand, tentatively interpreted as a free amino acid (Val) in the active center could explain this fact. The connecting region (A80 to A99), the target for proteolytic activation, establishes fewer contacts with the enzyme in PCPA than in PCPB. The activation segment of PCPA (A4 to A99) remains bound to the enzyme after the first trypsin cleavage between ArgA99-Ala1 probably due to the stability conferred on it by the alpha-helix (alpha 3) of the connecting segment. These and other structural features may explain the differences in intrinsic activity and different rates or proteolytic activation of each zymogen.  相似文献   

10.
A carboxypeptidase B-like enzyme which catalyses the hydrolysis of synthetic esters of lysine and arginine has been isolated from the starfish Dermasterias imbricata. This carboxypeptidase B-like enzyme has a molecular weight of approximately 34 000 and shares this and other properties with bovine pancreatic carboxypeptidase B. The existence of zymogen for this activity in the pyloric caeca of the starfish is demonstrated. This zymogen has a molecular weight near 40 000 and appears to be analogous to other monomeric procarboxypeptidases B. The zymogen possesses an intrinsic low-level activity toward synthetic substrates of carboxypeptidase B and is activated by trypsin.  相似文献   

11.
Pathological activation of digestive zymogens within the pancreatic acinar cell initiates acute pancreatitis. Cytosolic events regulate this activation within intracellular compartments of unclear identity. In an in vivo model of acute pancreatitis, zymogen activation was detected in both zymogen granule-enriched and microsomal cellular fractions. To examine the mechanism of this activation in vitro, a reconstituted system was developed using pancreatic cytosol, a zymogen granule-enriched fraction, and a microsomal fraction. Addition of cytosol to either particulate fraction resulted in a prominent increase in both trypsin and chymotrypsin activities. The percentage of the pool of trypsinogen and chymotrypsinogen activated was about twofold and sixfold greater, respectively, in the microsomal than in the zymogen granule-enriched fraction. Activation of chymotrypsinogen but not trypsinogen was significantly enhanced by ATP (5 mM) but not by the inactive ATP analog AMP-PNP. The processing of procarboxypeptidase B to its mature form also demonstrated a requirement for ATP and cytosol. E64d, an inhibitor of cathepsin B, a thiol protease that can activate trypsin, completely inhibited trypsin activity but did not affect chymotrypsin activity or carboxypeptidase B generation. These studies demonstrate that both zymogen granule-enriched and microsomal fractions from the pancreas can support cytosol-dependent zymogen activation. A component of the activation of some zymogens, such as chymotrypsinogen and procarboxypeptidase, may depend on ATP but not on trypsin or cathepsin B.  相似文献   

12.
The molecular events which lead to the proteolytic transformation of porcine procarboxypeptidase B (PCPB) in carboxypeptidase B (CPB) have been determined. Among pancreatic and other tested proteinases, trypsin is the only one capable of generating carboxypeptidase B activity from the zymogen, in vitro. In the first step of this process, trypsin produces cleavage at the boundary between the activation region and the CPB region. Subsequently, a definite sequence of cleavages occurs at the C-terminal end of the released activation segment of 95 residues, giving rise to characteristic intermediates and to a proteolytically resistant activation fragment of 81 residues. In this process, the newly formed CPB participates in the quick-trimming of the released activation peptides. Only a single CPB species is formed in the activation process. This fact and the inability of the released activation peptides to inhibit CPB--and, therefore, their inability to slow down the kinetics of appearance of CPB activity--are two important characteristics differentiating between the activation processes of procarboxypeptidases A and B. The sequence of the 95 residues (MW = 12,835) of the activation region of porcine PCPB has also been deduced, largely from the information obtained by Edman degradation of its fragments and in part by considerations of homology with the rat precursor. The porcine PCPB activation region contains a high percentage of acidic residues, lacks cysteines, methionines, and side-chain posttranslational modifications, and presents a low but significant homology (31%) with the corresponding sequence of porcine procarboxypeptidase A.  相似文献   

13.
Thrombin-activable fibrinolysis inhibitor (TAFI) is a carboxypeptidase found in human plasma, presumably as an inactive zymogen. The current dogma is that proteolytic activation by thrombin/thrombomodulin generates the active enzyme (TAFIa), which down-regulates fibrinolysis by removing C-terminal lysine residues from partially degraded fibrin. In this study, we have shown that the zymogen exhibits continuous and stable carboxypeptidase activity against large peptide substrates, and we suggest that the activity down-regulates fibrinolysis in vivo.  相似文献   

14.
The metalloexozymogen procarboxypeptidase A is mainly secreted in ruminants as a ternary complex with zymogens of two serine endoproteinases, chymotrypsinogen C and proproteinase E. The bovine complex has been crystallized, and its molecular structure analysed and refined at 2.6 A resolution to an R factor of 0.198. In this heterotrimer, the activation segment of procarboxypeptidase A essentially clamps the other two subunits, which shield the activation sites of the former from tryptic attack. In contrast, the propeptides of both serine proproteinases are freely accessible to trypsin. This arrangement explains the sequential and delayed activation of the constituent zymogens. Procarboxypeptidase A is virtually identical to the homologous monomeric porcine form. Chymotrypsinogen C displays structural features characteristic for chymotrypsins as well as elastases, except for its activation domain; similar to bovine chymotrypsinogen A, its binding site is not properly formed, while its surface located activation segment is disordered. The proproteinase E structure is fully ordered and strikingly similar to active porcine elastase; its specificity pocket is occluded, while the activation segment is fixed to the molecular surface. This first structure of a native zymogen from the proteinase E/elastase family does not fundamentally differ from the serine proproteinases known so far.  相似文献   

15.
The cotton bollworm Helicoverpa armigera (Hubner) (Lepidoptera: Noctuidae) is one of the most serious insect pests in Australia, India and China. The larva causes substantial economical losses to legume, fibre, cereal oilseed and vegetable crops. This pest has proven to be difficult to control by conventional means, mainly due to the development of pesticide resistance. We present here the 2.5 A crystal structure from the novel procarboxypeptidase (PCPAHa) found in the gut extracts from H. armigera larvae, the first one reported for an insect. This metalloprotease is synthesized as a zymogen of 46.6 kDa which, upon in vitro activation with Lys-C endoproteinase, yields a pro-segment of 91 residues and an active carboxypeptidase moiety of 318 residues. Both regions show a three-dimensional structure quite similar to the corresponding structures in mammalian digestive carboxypeptidases, the most relevant structural differences being located in the loops between conserved secondary structure elements, including the primary activation site. This activation site contains the motif (Ala)(5)Lys at the C terminus of the helix connecting the pro- and the carboxypeptidase domains. A remarkable feature of PCPAHa is the occurrence of the same (Ala)(6)Lys near the C terminus of the active enzyme. The presence of Ser255 in PCPAHa instead of Ile and Asp found in the pancreatic A and B forms, respectively, enlarges the S1' specificity pocket and influences the substrate preferences of the enzyme. The C-terminal tail of the leech carboxypeptidase inhibitor has been modelled into the PCPAHa active site to explore the substrate preferences and the enzymatic mechanism of this enzyme.  相似文献   

16.
Besides their classical role in alimentary protein degradation, zinc-dependant carboxypeptidases also participate in more selective regulatory processes like prohormone and neuropeptide processing or fibrinolysis inhibition in blood plasma. Human pancreatic procarboxypeptidase B (PCPB) is the prototype for those human exopeptidases that cleave off basic C-terminal residues and are secreted as inactive zymogens. One such protein is thrombin-activatable fibrinolysis inhibitor (TAFI), also known as plasma PCPB, which circulates in human plasma as a zymogen bound to plasminogen. The structure of human pancreatic PCPB displays a 95-residue pro-segment consisting of a globular region with an open-sandwich antiparallel-alpha antiparallel-beta topology and a C-terminal alpha-helix, which connects to the enzyme moiety. The latter is a 309-amino acid residue catalytic domain with alpha/beta hydrolase topology and a preformed active site, which is shielded by the globular domain of the pro-segment. The fold of the proenzyme is similar to previously reported procarboxypeptidase structures, also in that the most variable region is the connecting segment that links both globular moieties. However, the empty active site of human procarboxypeptidase B has two alternate conformations in one of the zinc-binding residues, which account for subtle differences in some of the key residues for substrate binding. The reported crystal structure, refined with data to 1.6A resolution, permits in the absence of an experimental structure, accurate homology modelling of TAFI, which may help to explain its properties.  相似文献   

17.
Spectrochemical probes have demonstrated that the conformations of carboxypeptidase A differ in solution and in the crystalline state. Detailed kinetic studies of carboxypeptidase A crystals and solutions now show that the physical state of the enzyme is also a critical parameter that affects this enzyme's function. Thus, for all substrates examined, crystallization of the enzyme markedly reduces catalytic efficiency, kcat, from 20- to 1000-fold. In addition, substrate inhibition, apparent in solution for some di- and depsipeptides, is abolished with crystals, while longer substrates with normal kinetics in solution may exhibit activation with the crystals. The physical state of the enzyme also affects the mode of action of known modifiers of peptidase activity of the enzyme. In solution, addition of benzoylglycine or cinnamic acid markedly increases the rate of hydrolysis of CbzGly-Phe, but, with the crystalline enzyme, their addition hardly alters the activity. This is in accord with the weakening or absence of inhibitory enzyme-substrate binding modes. Kinetic studies on crystals were carried out over a range of enzyme concentrations, substrate concentrations, and crystal sizes, and in all instances the results are in good agreement with the theory developed by Katchalski for enzymes insolubilized by other means. Importantly, these kinetic parameters are determined under conditions which obviate artifacts due to diffusion limitation of substrates or products. The differences in the kinetic behavior of carboxypeptidase crystals, on the one hand, and of their solutions, on the other hand, bear importantly on efforts to interpret the function of the enzyme in structural terms. Hypothetical modes of substrate-enzyme interaction, generated by superimposing substrate models on the crystal structure of carboxypeptidase to stimulate kinetics in solution, have failed to detect all of these changes which affect inhibitory or activating binding modes.  相似文献   

18.
Ostrich carboxypeptidases A and B were recently purified and characterized. The aim of this study was to isolate and purify, and partially characterize in terms of molecular weight, pI, amino acid composition and N-terminal sequencing, the precursor forms of carboxypeptidases from the ostrich pancreas. Inhibition studies with soybean trypsin inhibitor and activation studies with three proteases (bovine trypsin, bovine chymotrypsin and porcine elastase) were performed on crude ostrich acetone powder and the carboxypeptidase A and B activities were determined. SDS-PAGE was carried out after every incubation to monitor the rate and degree of conversion of a M(r) 66K component to procarboxypeptidase and carboxypeptidase A and B. The precursor forms were purified by Toyopearl Super Q and Pharmacia Mono Q chromatography. All three proteases converted the M(r) 66K component to procarboxypeptidases and carboxypeptidases over a set time interval, with carboxypeptidase A and B activities being detected in the acetone powder. Chymotrypsin was the preferred protease since it exhibited a more controlled activation of the procarboxypeptidases. The amino acid composition of procarboxypeptidase A revealed 525 residues. The N-terminal sequence of procarboxypeptidase A showed considerable homology when compared with several other mammalian sequences. M(r) and pI values of 52K and 5.23 were obtained for procarboxypeptidase A, respectively. This study indicated that ostrich procarboxypeptidase A is closely related to other mammalian procarboxypeptidase A molecules in terms of physicochemical properties.  相似文献   

19.
The carboxypeptidase A catalyzed hydrolyses of five structurally related dipeptide substrates in the presence of the inhibitor 3-phenylpropanoate have been studied. At nonactivating substrate concentrations, 3-phenylpropanoate is a mixed inhibitor of carbobenzoxyglycyl-L-phenylalanine hydrolysis and a noncompetitive inhibitor of the hydrolyses of benzoylglycyl-L-phenylalanine, cinnamoylglycyl-L-phenylalanine, hydrocinnamoylglycyl-L-phenylalanine, and acetylglycyl-L-phenylalanine. When carbobenzoxyglycyl-L-phenylalanine and benzoylglycyl-L-phenylalanine exhibit substrate activation, inhibition by 3-phenylpropanoate is mixed but appears to be mostly competitive. Proposed here is a site for the binding of 3-phenylpropanoate along with a kinetic mechanism consistent with these data.  相似文献   

20.
The three-dimensional crystal structure of duck carboxypeptidase D domain II has been solved in a complex with the peptidomimetic inhibitor, guanidinoethylmercaptosuccinic acid, occupying the specificity pocket. This structure allows a clear definition of the substrate binding sites and the substrate funnel-like access. The structure of domain II is the only one available from the regulatory carboxypeptidase family and can be used as a general template for its members. Here, it has been used to model the structures of domains I and III from the former protein and of human carboxypeptidase E. The models obtained show that the overall topology is similar in all cases, the main differences being local and because of insertions in non-regular loops. In both carboxypeptidase D domain I and carboxypeptidase E slightly different shapes of the access to the active site are predicted, implying some kind of structural selection of protein or peptide substrates. Furthermore, emplacement of the inhibitor structure in the active site of the constructed models showed that the inhibitor fits very well in all of them and that the relevant interactions observed with domain II are conserved in domain I and carboxypeptidase E but not in the non-active domain III because of the absence of catalytically indispensable residues in the latter protein. However, in domain III some of the residues potentially involved in substrate binding are well preserved, together with others of unknown roles, which also are highly conserved among all carboxypeptidases. These observations, taken together with others, suggest that domain III might play a role in the binding and presentation of proteins or peptide substrates, such as the pre-S domain of the large envelope protein of duck hepatitis B virus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号