首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 923 毫秒
1.
Protein stability is usually characterized calorimetrically by a melting temperature and related thermodynamic parameters. Despite its importance, the microscopic origin of the melting transition and the relationship between thermodynamic stability and dynamics remains a mystery. Here, NMR relaxation parameters were acquired for backbone 15NH groups of the 56 residue immunoglobulin-binding domain of streptococcal protein G over a pre-denaturation temperature range of 5-50 degrees C. Relaxation data were analyzed using three methods: the standard three-Lorentzian model free approach; the F(omega)=2omegaJ(omega) spectral density approach that yields motional correlation time distributions, and a new approach that determines frequency-dependent order parameters. Regardless of the method of analysis, the temperature dependence of internal motional correlation times and order parameters is essentially the same. Nanosecond time-scale internal motions are found for all NHs in the protein, and their temperature dependence yields activation energies ranging up to about 33kJ/mol residue. NH motional barrier heights are structurally correlated, with the largest energy barriers being found for residues in the most "rigid" segments of the fold: beta-strands 1 and 4 and the alpha-helix. Trends in this landscape also parallel the free energy of folding-unfolding derived from hydrogen-deuterium (H-D) exchange measurements, indicating that the energetics for internal motions occurring on the nanosecond time-scale mirror those occurring on the much slower time-scale of H-D exchange. Residual heat capacities, derived from the temperature dependence of order parameters, range from near zero to near 100J/mol K residue and correlate with this energy landscape. These results provide a unique picture of this protein's energy landscape and a relationship between thermodynamic stability and dynamics that suggests thermosensitive regions in the fold that could initiate the melting process.  相似文献   

2.
Backbone dynamics of uniformly (15)N-labeled barstar have been studied at 32 degrees C, pH 6.7, by using (15)N relaxation data obtained from proton-detected 2D (1)H-(15)N NMR spectroscopy. (15)N spin-lattice relaxation rate constants (R(1)), spin-spin relaxation rate constants (R(2)), and steady-state heteronuclear (1)H-(15)N NOEs have been determined for 69 of the 86 (excluding two prolines and the N-terminal residue) backbone amide (15)N at a magnetic field strength of 14.1 Tesla. The primary relaxation data have been analyzed by using the model-free formalism of molecular dynamics, using both isotropic and axially symmetric diffusion of the molecule, to determine the overall rotational correlation time (tau(m)), the generalized order parameter (S(2)), the effective correlation time for internal motions (tau(e)), and NH exchange broadening contributions (R(ex)) for each residue. As per the axially symmetric diffusion, the ratio of diffusion rates about the unique and perpendicular axes (D( parallel)/D( perpendicular)) is 0.82 +/- 0.03. The two results have only marginal differences. The relaxation data have also been used to map reduced spectral densities for the NH vectors of these residues at three frequencies: 0, omega(H), and omega(N), where omega(H),(N) are proton and nitrogen Larmor frequencies. The value of tau(m) obtained from model-free analysis of the relaxation data is 5.2 ns. The reduced spectral density analysis, however, yields a value of 5.7 ns. The tau(m) determined here is different from that calculated previously from time-resolved fluorescence data (4.1 ns). The order parameter ranges from 0.68 to 0.98, with an average value of 0.85 +/- 0.02. A comparison of the order parameters with the X-ray B-factors for the backbone nitrogens of wild-type barstar does not show any considerable correlation. Model-free analysis of the relaxation data for seven residues required the inclusion of an exchange broadening term, the magnitude of which ranges from 2 to 9.1 s(-1), indicating the presence of conformational averaging motions only for a small subset of residues.  相似文献   

3.
It has been shown previously that two types of motion are adequate to describe the partially relaxed 2H NMR line shapes (inversion recovery experiment) for the backbone portion of the glycolipid 1,2-di-O-tetradecyl-3-O-(beta-D-glucopyranosyl)-sn-glycerol (beta-DTGL) in the highly ordered gel phase (Auger, M.A., D. Carrier, I.C.P. Smith, and H. C. Jarrell. 1990. J. Am. Chem. Soc. 112:1373-1381). This study extends the latter investigation to the more fluid liquid-crystalline phase, where more complex motions are anticipated. Analyses of the powder line shapes and oriented sample relaxation data for both the glycerol backbone and head group regions of this lipid have been performed. The dynamics of glycerol at the C3 position in the gel state have been described by large angle jumps about the C2-C3 bond with a correlation time in the fast-limit motional regime (omega o tau c much less than 1) and site populations 0.46, 0.34, and 0.20. The present data show that in the liquid-crystalline phase the internal jump rate is maintained, and two additional motions are necessary to describe the dependence of the relaxation rate on the orientation of the director with respect to the magnetic field direction. These are rotation about the molecular long axis with a correlation time in the slow-limit motional regime very near to the T1 minimum (omega o tau c approximately 0.65), and molecular fluctuations about the order director (modeled by a Maier-Saupe restoration potential). This treatment was also extended to the glucose head group where additional segmental motion about the glycosidic bond has been reported previously. While the two motions dominating relaxation at the glycerol C3 segment reproduce the general relaxation features of the glucose head group, the results suggest that additional motion about the glycosidic linkage must be present. This study is a stringent test of the motional model chosen earlier because relaxation data were obtained at two 2H NMR frequencies using two relaxation experiments (T1Z and T1Q) and two types of sample preparation (oriented and dispersed multibilayers). The results strongly uphold the choice of model and indicate the utility of both oriented samples and the T1Q experiment.  相似文献   

4.
Peptide GFSKAELAKARAAKRGGY folds in an alpha-helical conformation that is stabilized by formation of a hydrophobic staple motif and an N-terminal capping box (Munoz V. Blanco FJ, Serrano L, 1995, Struct Biol 2:380-385). To investigate backbone and side-chain internal motions within the helix and hydrophobic staple, residues F2, A5, L7, A8, and A10 were selectively 13C- and 15N-enriched and NMR relaxation experiments were performed in water and in water/trifluoroethanol (TFE) solution at four Larmor frequencies (62.5, 125, 150, and 200 MHz for 13C). Relaxation data were analyzed using the model free approach and an anisotropic diffusion model. In water, angular variances of motional vectors range from 10 to 20 degrees and backbone phi,psi bond rotations for helix residues A5, L7, A8, and A10 are correlated indicating the presence of Calpha-H, Calpha-Cbeta, and N-H rocking-type motions along the helix dipole axis. L7 side-chain CbetaH2 and CgammaH motions are also correlated and as motionally restricted as backbone CalphaH, suggesting considerable steric hindrance with neighboring groups. In TFE which stabilizes the fold, internal motional amplitudes are attenuated and rotational correlations are increased. For the side chain of hydrophobic staple residue F2, wobbling-in-a-cone type motions dominate in water, whereas in TFE, the Cbeta-Cgamma bond and phenyl ring fluctuate more simply about the Calpha-Cbeta bond. These data support the Daragan-Mayo model of correlated bond rotations (Daragan VA, Mayo KH, 1996, J Phys Chem 100:8378-8388) and contribute to a general understanding of internal motions in peptides and proteins.  相似文献   

5.
Yao J  Chung J  Eliezer D  Wright PE  Dyson HJ 《Biochemistry》2001,40(12):3561-3571
Apomyoglobin forms a denatured state under low-salt conditions at pH 2.3. The conformational propensities and polypeptide backbone dynamics of this state have been characterized by NMR. Nearly complete backbone and some side chain resonance assignments have been obtained, using a triple-resonance assignment strategy tailored to low protein concentration (0.2 mM) and poor chemical shift dispersion. An estimate of the population and location of residual secondary structure has been made by examining deviations of (13)C(alpha), (13)CO, and (1)H(alpha) chemical shifts from random coil values, scalar (3)J(HN,H)(alpha) coupling constants and (1)H-(1)H NOEs. Chemical shifts constitute a highly reliable indicator of secondary structural preferences, provided the appropriate random coil chemical shift references are used, but in the case of acid-unfolded apomyoglobin, (3)J(HN,H)(alpha) coupling constants are poor diagnostics of secondary structure formation. Substantial populations of helical structure, in dynamic equilibrium with unfolded states, are formed in regions corresponding to the A and H helices of the folded protein. In addition, the deviation of the chemical shifts from random coil values indicates the presence of helical structure encompassing the D helix and extending into the first turn of the E helix. The polypeptide backbone dynamics of acid-unfolded apomyoglobin have been investigated using reduced spectral density function analysis of (15)N relaxation data. The spectral density J(omega(N)) is particularly sensitive to variations in backbone fluctuations on the picosecond to nanosecond time scale. The central region of the polypeptide spanning the C-terminal half of the E helix, the EF turn, and the F helix behaves as a free-flight random coil chain, but there is evidence from J(omega(N)) of restricted motions on the picosecond to nanosecond time scale in the A and H helix regions where there is a propensity to populate helical secondary structure in the acid-unfolded state. Backbone fluctuations are also restricted in parts of the B and G helices due to formation of local hydrophobic clusters. Regions of restricted backbone flexibility are generally associated with large buried surface area. A significant increase in J(0) is observed for the NH resonances of some residues located in the A and G helices of the folded protein and is associated with fluctuations on a microsecond to millisecond time scale that probably arise from transient contacts between these distant regions of the polypeptide chain. Our results indicate that the equilibrium unfolded state of apomyoglobin formed at pH 2.3 is an excellent model for the events that are expected to occur in the earliest stages of protein folding, providing insights into the regions of the polypeptide that spontaneously undergo local hydrophobic collapse and sample nativelike secondary structure.  相似文献   

6.
J W Peng  G Wagner 《Biochemistry》1992,31(36):8571-8586
A new strategy is used for studying the internal motions of proteins based on measurements of NMR relaxation parameters. The strategy yields values of the so-called spectral density functions J(omega) for N-H bond vectors. The spectral density functions are related to the distribution of frequencies contained in the rotational (overall and internal) motions of these NH bond vectors. No a priori model assumptions about the dynamics are required in this approach. The method involves measurements of six relaxation parameters consisting of 15N longitudinal relaxation rates, transverse relaxation rates of in-phase and antiphase coherence, the relaxation rates of heteronuclear 1H-15N two-spin order, the heteronuclear 1H-15N nuclear Overhauser effects, and longitudinal relaxation rates of the amide protons. The values of the spectral density functions at the five frequencies 0, omega N, omega H + omega N, omega H, and omega H - omega N are determined from the relaxation parameters using analytical relations derived previously [Peng & Wagner (1992) J. Magn. Reson. 98, 308-332]. Here, the method is applied to characterize the backbone dynamics of the 15N-enriched proteinase inhibitor eglin c, a protein of 70 residues. The values for J(0) and J(omega N = 50 MHz) vary significantly with the amino acid sequence, whereas the spectral densities at higher frequencies, J(450 MHz), J(500 MHz), and J(550 MHz), are typically much smaller and show no significant variation with the sequence. The collective behavior of the J(omega) values indicate greater internal motion for the proteinase binding loop residues and the first eight N-terminal residues. The additional internal motion in these regions is in the rate range below 450 MHz. The values of J(omega) are also compared with root mean square deviations (rmsds) of backbone atoms as obtained in NMR structure determinations. Low values of J(0) and J(omega N) are correlated with high rmsds. Spectral densities at higher frequencies, J(450 MHz), J(500 MHz), and J(550 MHz), are small and show no correlation with rmsds. A comparison with the spectral density functions obtained by fitting the experimental data to the functional dependence of the Lipari and Szabo formalism [Lipari & Szabo (1982a) J. Am. Chem. Soc. 104, 4546-4559] is made.  相似文献   

7.
The combined application of one- and two-dimensional high-field NMR techniques has led to the first assignment of the 1H, 13C, and 15N spectra of the pentadecapeptide gramicidin A in dimethylsulphoxide solution. The 62.9-MHz and 100.6-MHz 13C spin-lattice relaxation times and 13C-[1H] NOE factors for the backbone alpha carbons have been analysed in the 'model-free' approach to give a single correlation time (tau m) for isotropic overall molecular motion and an order parameter and internal correlation time for each C alpha H group in the backbone. The relatively high and constant values for the order parameter along the backbone indicate a degree of ordering of the structure, while the internal correlation times show that internal motions are progressively more rapid towards the N terminus. The average values of the vicinal HNC alpha H couplings are 7.4 Hz and 8.4 Hz respectively for the alternate L- and D-amino acid residues. The values are not consistent with either a ribbon conformation for the backbone or a right-handed beta 6.3 helix; they are consistent with the model proposed by Glickson et al. [Glickson, J. D., Mayers, D. F., Settine, J. M. & Urry, D. W. (1972) Biochemistry 11, 477-486] in which there is a rapid conformational order in equilibrium disorder equilibrium, the ordered structure being the left-handed beta 6.3 helix and the disordered state having local random-coil character.  相似文献   

8.
Methyl axis (S2axis) and backbone NH (S2NH) order parameters derived from eight proteins have been analyzed. Similar distribution profiles for Ala S2axis and S2NH order parameters were observed. A good correlation between the two S2axis values of Val and Leu methyl groups is noted, although differences between order parameters can arise. The relation of S2axis or S2NH to solvent accessibility and packing density has also been investigated. Correlations are weak, likely reflecting the importance of collective, non-local motions in proteins. The lack of correlation between these simple structural parameters and dynamics emphasizes the importance of motional studies to fully characterize proteins.  相似文献   

9.
The coupling between the conformational properties of double-stranded DNA and its internal dynamics has been examined. The solution structures of the isomeric DNA oligomers d(GCGTACGC)(2) (UM) and d(CGCTAGCG)(2) (CTSYM) were determined with (1)H NMR spectroscopy by utilizing distance restraints from total relaxation matrix analysis of NOESY cross-peak intensities in restrained molecular dynamics calculations. The root-mean-square deviation of the coordinates for the ensemble of structures was 0.13 A for UM and 0.49 A for CTSYM, with crystallographic equivalent R(c)=0.41 and 0.39 and sixth-root residual R(x)=0.11 and 0.10 for UM and CTSYM, respectively. Both UM and CTSYM are B-form with straight helical axes and show sequence-dependent variations in conformation. The internal dynamics of UM and CTSYM were previously determined by analysis of (13)C relaxation parameters in the context of the Lipari & Szabo model-free formalism. Helical parameters for the two DNA oligomers were examined for linear correlations with the order parameters (S(2)) of groups of (13)C spins in base-pairs and dinucleotide units of UM and CTSYM. Correlations were found for six interstrand base-pair parameters tip, y-displacement, inclination, buckle and stretch with various combinations of S(2) for atoms in Watson-Crick base-pairs and for two inter-base-pair parameters, rise and roll with various combinations of S(2) for atoms in dinucleotides. The correlations for the interstrand base-pair helical parameters indicate that the conformations of the deoxyribose residues of each strand are dynamically coupled. Also, the inter-base-pair separation has a profound effect on the local internal motions available to the DNA, supporting the idea that rise is a principal degree of freedom for DNA conformational variability. The correlations indicate collective atomic motions of spins that may represent specific motional modes in DNA, and that base sequence has a predictable effect on the relative order of groups of spins both in the bases and in the deoxyribose ring of the DNA backbone. These observations suggest that an important functional outcome of DNA base sequence is the modulation of both the conformation and dynamic behavior of the DNA backbone.  相似文献   

10.
We have investigated the effect of deuteration of non‐exchangeable protons on protein global thermal stability, hydrophobicity, and local flexibility using well‐known thermostable model systems such as the villin headpiece subdomain (HP36) and the third immunoglobulin G‐binding domain of protein G (GB3). Reversed‐phase high‐performance liquid chromatography (RP‐HPLC) measurements as a function of temperature probe global thermal stability in the presence of acetonitrile, while differential scanning calorimetry determines thermal stability in solution. Both indicate small but measurable changes in the order of several degrees. RP‐HPLC also permitted quantification of the effect of deuteration of just three core phenylalanine side chains of HP36. NMR dynamics investigation has focused on methyl axes motions using cross‐correlated relaxation measurements. The analysis of order parameters provided a complex picture indicating that deuteration generally increases motional amplitudes of sub‐nanosecond motion in GB3 but decreases those in HP36. Combined with earlier dynamics measurements at Cα–Cβ sites and backbone sites of GB3, which probed slower time scales, the results point to the need to probe multiple atoms in the protein and variety of time scales to the discern the full complexity of the effects of deuteration on dynamics.  相似文献   

11.
Using ensemble refinement of the third immunoglobulin binding domain (GB3) of streptococcal protein G (a small alpha/beta protein of 56 residues), we demonstrate that backbone (N-H, N-C', Calpha-Halpha, Calpha-C') residual dipolar coupling data in five independent alignment media, generalized order parameters from 15N relaxation data, and B-factors from a high-resolution (1.1A), room temperature crystal structure are entirely consistent with one another within experimental error. The optimal ensemble size representation is between four and eight, as assessed by complete cross-validation of the residual dipolar couplings. Thus, in the case of GB3, all three observables reflect the same low-amplitude anisotropic motions arising from fluctuations in backbone phi/psi torsion angles in the picosecond to nanosecond regime in both solution and crystalline environments, yielding a unified picture of fast, high-probability atomic motions in proteins. An understanding of these motions is crucial for understanding the impact of protein dynamics on protein function, since they provide part of the driving force for triggered conformational changes that occur, for example, upon ligand binding, signal transduction and enzyme catalysis.  相似文献   

12.
Walsh ST  Lee AL  DeGrado WF  Wand AJ 《Biochemistry》2001,40(32):9560-9569
Understanding how the amino acid sequence of a polypeptide chain specifies a unique, functional three-dimensional structure remains an important goal, especially in the context of the emerging discipline of de novo protein design. Alpha3D is a single chain protein of 73 amino acids resulting from a de novo design effort. Previous solution nuclear magnetic resonance studies of alpha3D confirm that the protein adopts the designed structure of a three-helix bundle. Furthermore, alpha3D has been previously shown to possess all of the major thermodynamic and structural characteristics of natural proteins, though it shares no sequence homology to any protein sequence in the database. In this work, the backbone and side-chain dynamics of alpha3D were investigated using 15N, 13C, and 2H nuclear magnetic resonance relaxation methods with the aim of assessing the character of the internal motions of this native-like protein of de novo design. At the backbone level, both 15N and 13C(alpha) relaxation studies indicate highly restrictive motion on the picosecond to nanosecond time scale in the alpha-helical regions of alpha3D, with increasing mobility at the ends of the alpha-helices and in the two loop regions. This is largely consistent with what is seen in proteins of natural origin. Overall, the view provided by both 2H and 13C methyl relaxation methods suggest that the side chains of alpha3D are more dynamic compared to natural proteins. Regions of relative flexibility bound clusters of rigid methyl-bearing side-chain groups that are interspersed with aromatic and beta-branched amino acids. The time scale of motions associated with methyl-bearing side chains of alpha3D are significantly longer than that seen in natural proteins. These results indicate that the strategies underlying the design of alpha3D have largely, but not completely, captured both the structural and dynamic character of natural proteins.  相似文献   

13.
A set of single Trp mutants of class B Tet repressor (TetR), in which Trp residues are located from positions 159 to 167, has been engineered to investigate the dynamics of the loop joining the alpha-helices 8 and 9. The fluorescence anisotropy decay of most mutants can be described by the sum of three exponential components. The longest rotational correlation time, 30 ns at 10 degrees C, corresponds to the overall rotation of the protein. The shortest two components, on the subnanosecond and nanosecond time scale, are related to internal motions of the protein. The initial anisotropy, in the 0.16-0.22 range, indicates the existence of an additional ultrafast motion on the picosecond time scale. Examination of physical models for underlying motions indicates that librational motions of the Trp side chain within the rotameric chi(1) x chi(2) potential wells contribute to the picosecond depolarization process, whereas the subnanosecond and nanosecond depolarization processes are related to backbone dynamics. In the absence of inducer, the order parameters of these motions, about 0.90 and 0.80 for most positions, indicate limited flexibility of the loop backbone. Anhydrotetracycline binding to TetR induces an increased mobility of the loop on the nanosecond time scale. This suggests that entropic factors might play a role in the mechanism of allosteric transition.  相似文献   

14.
The backbone dynamics of ferricytochrome b(562), a four-helix bundle protein from Escherichia coli, have been studied by NMR spectroscopy. The consequences of the introduction of a c-type thioether linkage between the heme and protein and the reduction to the ferrous cytochrome have also been analyzed. (15)N relaxation rates R(1) and R(2) and (1)H-(15)N NOEs were measured at proton Larmor frequencies of 500 and 600 MHz for the oxidized and reduced protein as well as for the oxidized R98C variant. In the latter protein, an "artificial" thioether covalent bond has been introduced between the heme group and the protein frame [Arnesano, F., Banci, L., Bertini, I., Ciofi-Baffoni, S., de Lumley Woodyear, T., Johnson, C. M., and Barker, P. D. (2000) Biochemistry 39, 1499-1514]. The (15)N relaxation data were analyzed with the ModelFree protocol, and the mobility parameters on the picosecond to nanosecond time scale were compared for the three species. The three forms are rather rigid as a whole, with average generalized order parameters values of 0.87 +/- 0.08 (oxidized cytochrome b(562)), 0.84 +/- 0.07 (reduced cytochrome b(562)), and 0.85 +/- 0.07 (oxidized R98C cytochrome b(562)), indicating similar mobility for each system. Lower order parameters (S(2)) are found for residues belonging to loops 1 and 2. Higher mobility, as indicated by lower order parameters, is found for heme binding helices alpha 1 and alpha 4 in the R98C variant with respect to the wild-type protein. The analysis requires a relatively long rotational correlation time (tau(m) = 9.6 ns) whose value is accounted for on the basis of the anisotropy of the molecular shape and the high phosphate concentration needed to ensure the occurrence of monomer species. A parallel study of motions in the millisecond to microsecond time scale has also been performed on oxidized wild-type and R98C cytochrome b(562). In a CPMG experiment, decay rates were analyzed in the presence of spin-echo pulse trains of variable spacing. The dynamic behavior on this time scale is similar to that observed on the sub-nanosecond time scale, showing an increased mobility in the residues connected to the heme ligands in the R98C variant. It appears that the increased protein stability of the variant, established previously, is not correlated with an increase in rigidity.  相似文献   

15.
16.
Backbone dynamics of mouse major urinary protein I (MUP-I) was studied by (15)N NMR relaxation. Data were collected at multiple temperatures for a complex of MUP-I with its natural pheromonal ligand, 2- sec -4,5-dihydrothiazole, and for the free protein. The measured relaxation rates were analyzed using the reduced spectral density mapping. Graphical analysis of the spectral density values provided an unbiased qualitative picture of the internal motions. Varying temperature greatly increased the range of analyzed spectral density values and therefore improved reliability of the analysis. Quantitative parameters describing the dynamics on picosecond to nanosecond time scale were obtained using a novel method of simultaneous data fitting at multiple temperatures. Both methods showed that the backbone flexibility on the fast time scale is slightly increased upon pheromone binding, in accordance with the previously reported results. Zero-frequency spectral density values revealed conformational changes on the microsecond to millisecond time scale. Measurements at different temperatures allowed to monitor temperature dependence of the motional parameters.  相似文献   

17.
The study of backbone and side-chain internal motions in proteins and peptides is crucial to having a better understanding of protein/peptide "structure" and to characterizing unfolded and partially folded states of proteins and peptides. To achieve this, however, requires establishing a baseline for internal motions and motional restrictions for all residues in the fully, solvent-exposed "unfolded state." GXG-based tripeptides are the simpliest peptides where residue X is fully solvent exposed in the context of an actual peptide. In this study, a series of GXG-based tripeptides has been synthesized with X being varied to include all twenty common amino acid residues. Proton-coupled and -decoupled (13)C-nmr relaxation measurements have been performed on these twenty tripeptides and various motional models (Lipari-Szabo model free approach, rotational anisotropic diffusion, rotational fluctuations within a potential well, rotational jump model) have been used to analyze relaxation data for derivation of angular variances and motional correlation times for backbone and side-chain chi(1) and chi(2) bonds and methyl group rotations. At 298 K, backbone motional correlation times range from about 50 to 85 ps, whereas side-chain motional correlation times show a much broader spread from about 18 to 80 ps. Angular variances for backbone phi,psi bond rotations range from 11 degrees to 23 degrees and those for side chains vary from 5 degrees to 24 degrees for chi(1) bond rotations and from 5 degrees to 27 degrees for chi(2) bond rotations. Even in these peptide models of the "unfolded state," side-chain angular variances can be as restricted as those for backbone and beta-branched (valine, threonine, and isoleucine) and aromatic side chains display the most restricted motions probably due to steric hinderence with backbone atoms. Comparison with motional data on residues in partially folded, beta-sheet-forming peptides indicates that side-chain motions of at least hydrophobic residues are less restricted in the partially folded state, suggesting that an increase in side-chain conformational entropy may help drive early-stage protein folding. Copyright 1999 John Wiley & Sons, Inc.  相似文献   

18.
The tetratricopeptide repeat (TPR) is a 34-residue helix-turn-helix motif that occurs as three or more tandem repeats in a wide variety of proteins. We have determined the repeat motions and backbone fluctuations of proteins containing two or three consensus TPR repeats (CTPR2 and CPTR3, respectively) using 15N NMR relaxation measurements. Rotational diffusion tensors calculated from these data for each repeat within each TPR protein indicate that there is a high degree of motional correlation between different repeats in the same protein. This is consistent with the prevailing view that repeat proteins, such as CTPR2 and CTPR3, behave as single cooperatively folded domains. The internal motions of backbone NH groups were determined using the Lipari-Szabo model-free formalism. For most residues, there was a clear separation between the influence of internal motion and the influence of global rotational tumbling on the observed magnetic relaxation. The local internal motions are highly restricted in most of the helical elements, with slightly greater flexibility in the linker elements. Comparisons between CTPR2 and CTPR3 indicate that an addition of a TPR repeat to the C-terminus (before the solvation helix) of CTPR2 slightly reduces the flexibility of the preceding helix.  相似文献   

19.
D Huster  L Xiao  M Hong 《Biochemistry》2001,40(25):7662-7674
Solid-state NMR spectroscopy was employed to study the molecular dynamics of the colicin Ia channel domain in the soluble and membrane-bound states. In the soluble state, the protein executes small-amplitude librations (with root-mean-square angular fluctuations of 0-10 degrees ) in the backbone and larger-amplitude motions (16-17 degrees ) in the side chains. Upon membrane binding, the motional amplitudes increase significantly for both the backbone (12-16 degrees ) and side chains (23-29 degrees ), as manifested by the reduction in the C-H and H-H dipolar couplings and (15)N chemical shift anisotropy. These motions occur not only on the pico- to nanosecond time scales, but also on the microsecond time scale, as revealed by the (1)H rotating-frame spin-lattice relaxation times. Average motional correlation times of 0.8 and 1.2 micros were extracted for the soluble and membrane-bound states, respectively. In comparison, both forms of the colicin Ia channel domain are completely immobile on the millisecond scale. These results indicate that the colicin Ia channel domain has enhanced conformational mobility in the lipid bilayer compared to the soluble state. This membrane-induced mobility increase is consistent with the loss of tertiary structure of the protein in the membrane, which was previously suggested by the extended helical array model [Zakharov et al. (1998) Proc. Natl. Acad. Sci. U.S.A. 95, 4282-4287]. An extended structure would also facilitate protein interactions with the mobile lipids and thus increase the protein internal motions. We speculate that the large mobility of the membrane-bound colicin Ia channel domain is a prerequisite for channel opening in the presence of a voltage gradient.  相似文献   

20.
The orientation of the disaccharide headgroup of a lactose-containing lipid, 3-O-(4-O-beta-D-galactopyranosyl-beta-D-glucopyranosyl)-1,2-di-O-tetrade cyl-sn- glycerol (DTLL), relative to the surface of bilayer membranes has been determined via 2H NMR. The lactosyl headgroup is extended away from the membrane surface into the aqueous phase. The headgroup motion has axial symmetry as evidenced by the spectral line shape and order parameter tensor. 2H NMR of oriented multibilayers of DTLL confirms that the director of motional averaging is the bilayer normal. The two sugar residues have segmental order parameters S (glucose, 0.53; galactose, 0.51) which indicate that the headgroup fluctuates about the bilayer normal as a rigid unit. 2H spin-lattice relaxation times T1z for deuterons on each of the two sugar rings are similar, indicating further that there is no substantial motion about the disaccharide linkage within the headgroup. The magnitude of the relaxation times (4 ms) suggests that the rigid body motions of the headgroup are approaching the Larmor frequency; however, they increase with increasing temperature, indicating that the motions are rapid enough to be in the fast motional regime (omega o2 tau c2 less than 1). The conformation about the galactose-glucose intersaccharide linkage, calculated from the 2H NMR data, is shown to differ substantially from those found in X-ray diffraction studies of crystalline lactose and high-resolution NMR studies of methyl lactoside in nonviscous solution. The orientations of the hydroxymethyl groups in the headgroup have been calculated from the 2H NMR data. For the galactosyl residue the data are consistent with the presence of more than one rotamer about the C5"-C6" bond which are in fast exchange on the 2H NMR time scale. The hydroxymethyl group of the glucose residue exists in two rotameric forms about the C5'-C6' bond which have relative populations of ca. 2:1 and which are in slow exchange on the 2H NMR time scale (10(-5) s). The two rotamers differ from those deduced from X-ray crystallography of crystalline lactose and 13C NMR studies of methyl lactoside in solution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号