首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
程旭东  凌宏清 《遗传》2006,28(6):731-736
反转录转座子是基因组进化的推动者之一。分为LTR和非LTR两种类型。前者是真核基因组的主要组分,结构和转座方式与逆转录病毒类似。后者是最初发现于动物基因组新近发现在植物基因组中也广泛存在的新型重复序列,包括LINEs(long interspersed nuclear elements)和SINEs(short interspersed nuclear elements)两个亚型。它们大多因自身或受宿主基因组的调控而失去转座活性。其转座机理目前还不十分清楚,推测LINEs可以自主转座,SINEs依赖其他转座子被动转座。种系分析认为LINEs可能是最古老的反转录转座子,SINEs的起源未知。文章对以上内容进行了归纳和讨论。  相似文献   

3.
Two major classes of retrotransposons have invaded eukaryotic genomes: the LTR retrotransposons closely resembling the proviral integrated form of infectious retroviruses, and the non-LTR retrotransposons including the widespread, autonomous LINE elements. Here, we review the modeling effects of the latter class of elements, which are the most active in humans, and whose enzymatic machinery is subverted to generate a large series of "secondary" retroelements. These include the processed pseudogenes, naturally present in all eukaryotic genomes possessing non-LTR retroelements, and the very successful SINE elements such as the human Alu sequences which have evolved refined parasitic strategies to efficiently bypass the original "protectionist" cis-preference of LINEs for their own retrotransposition.  相似文献   

4.
5.
6.
Sabot F  Schulman AH 《Heredity》2006,97(6):381-388
LTR (long terminal repeat) retrotransposons are the main components of higher plant genomic DNA. They have shaped their host genomes through insertional mutagenesis and by effects on genome size, gene expression and recombination. These Class I transposable elements are closely related to retroviruses such as the HIV by their structure and presumptive life cycle. However, the retrotransposon life cycle has been closely investigated in few systems. For retroviruses and retrotransposons, individual defective copies can parasitize the activity of functional ones. However, some LTR retrotransposon groups as a whole, such as large retrotransposon derivatives and terminal repeats in miniature, are non-autonomous even though their genomic insertion patterns remain polymorphic between organismal accessions. Here, we examine what is known of the retrotransposon life cycle in plants, and in that context discuss the role of parasitism and complementation between and within retrotransposon groups.  相似文献   

7.
8.
LTR_STRUC: a novel search and identification program for LTR retrotransposons   总被引:10,自引:0,他引:10  
MOTIVATION: Long terminal repeat (LTR) retrotransposons constitute a substantial fraction of most eukaryotic genomes and are believed to have a significant impact on genome structure and function. Conventional methods used to search for LTR retrotransposons in genome databases are labor intensive. We present an efficient, reliable and automated method to identify and analyze members of this important class of transposable elements. RESULTS: We have developed a new data-mining program, LTR_STRUC (LTR retrotransposon structure program) which identifies and automatically analyzes LTR retrotransposons in genome databases by searching for structural features characteristic of such elements. LTR_STRUC has significant advantages over conventional search methods in the case of LTR retrotransposon families having low sequence homology to known queries or families with atypical structure (e.g. non-autonomous elements lacking canonical retroviral ORFs) and is thus a discovery tool that complements established methods. LTR_STRUC finds LTR retrotransposons using an algorithm that encompasses a number of tasks that would otherwise have to be initiated individually by the user. For each LTR retrotransposon found, LTR_STRUC automatically generates an analysis of a variety of structural features of biological interest. AVAILABILITY: The LTR_STRUC program is currently available as a console application free of charge to academic users from the authors.  相似文献   

9.

Background

Long terminal repeat (LTR) retrotransposons make up a large fraction of the typical mammalian genome. They comprise about 8% of the human genome and approximately 10% of the mouse genome. On account of their abundance, LTR retrotransposons are believed to hold major significance for genome structure and function. Recent advances in genome sequencing of a variety of model organisms has provided an unprecedented opportunity to evaluate better the diversity of LTR retrotransposons resident in eukaryotic genomes.

Results

Using a new data-mining program, LTR_STRUC, in conjunction with conventional techniques, we have mined the GenBank mouse (Mus musculus) database and the more complete Ensembl mouse dataset for LTR retrotransposons. We report here that the M. musculus genome contains at least 21 separate families of LTR retrotransposons; 13 of these families are described here for the first time.

Conclusions

All families of mouse LTR retrotransposons are members of the gypsy-like superfamily of retroviral-like elements. Several different families of unrelated non-autonomous elements were identified, suggesting that the evolution of non-autonomy may be a common event. High sequence similarity between several LTR retrotransposons identified in this study and those found in distantly-related species suggests that horizontal transfer has been a significant factor in the evolution of mouse LTR retrotransposons.
  相似文献   

10.
蒋爽  滕元文  宗宇  蔡丹英 《西北植物学报》2013,33(11):2354-2360
反转录转座子是真核生物基因组中普遍存在的一类可移动的遗传因子,它们以RNA为媒介,在基因组中不断自我复制。在高等植物中,反转录转座子是基因组的重要成分之一。反转录转座子可以分为5大类型,其中以长末端重复(LTR)类型报道较多。LTR类型由于其首尾具有长末端重复序列,内部含有PBS、PPT、GAG和POL开放阅读框、TSD等结构,可以采用生物信息学软件进行预测。LTR反转录转座子的活性受到自身甲基化和环境因素的影响,DNA甲基化抑制反转录转座子转座,而外界环境的刺激能够激活转座子,从而影响插入位点周边基因的表达。同时由于LTR反转录转座子在植物中普遍存在,丰富的拷贝数以及多态性为新型分子标记(RBIP、SSAP、IRAP、REMAP)的开发提供了良好的素材。该文对近年来国内外有关植物反转录转座子的类型、结构特征、 LTR反转录转座子的活性及其影响因素、 LTR反转录转座子的预测以及标记开发等方面的研究进展进行综述。  相似文献   

11.
12.
Gladyshev EA  Meselson M  Arkhipova IR 《Gene》2007,390(1-2):136-145
Rotifers of class Bdelloidea, a group of aquatic invertebrates in which males and meiosis have never been documented, are also unusual in their lack of multicopy LINE-like and gypsy-like retrotransposons, groups inhabiting the genomes of nearly all other metazoans. Bdelloids do contain numerous DNA transposons, both intact and decayed, and domesticated Penelope-like retroelements Athena, concentrated at telomeric regions. Here we describe two LTR retrotransposons, each found at low copy number in a different bdelloid species, which define a clade different from previously known clades of LTR retrotransposons. Like bdelloid DNA transposons and Athena, these elements are found preferentially in telomeric regions. Unlike bdelloid DNA transposons, many of which are decayed, the newly described elements, named Vesta and Juno, inhabiting the genomes of Philodina roseola and Adineta vaga, respectively, appear to be intact and represent recent insertions, possibly from an exogenous source. We describe the retrovirus-like structure of the new elements, containing gag, pol, and env-like open reading frames, and discuss their possible origins, transmission, and behavior in bdelloid genomes.  相似文献   

13.
Improved knowledge of genome composition, especially of its repetitive component, generates important informations in both theoretical and applied research. In this study, we provide the first insight into the local organization of the sunflower genome by sequencing and annotating 349,380 bp from 3 BAC clones, each including one single-copy gene. These analyses resulted in the identification of 11 putative gene sequences, 18 full-length LTR retrotransposons, 6 incomplete LTR retrotransposons, 2 non-autonomous LTR-retroelements (LINEs), 2 putative DNA transposons fragments and one putative helitron. Among LTR-retrotransposons, non-autonomous elements (the so-called LARDs), which do not carry any protein-encoding sequence, were discovered for the first time in the sunflower. The insertion time of intact retroelements was measured, based on sister LTRs divergence. All isolated elements were inserted relatively recently, especially those belonging to the Gypsy superfamily. Retrotransposon families related to those identified in the BAC clones are present also in other species of Helianthus, both annual and perennial, and even in other Asteraceae. In one of the three BAC clones, we found five copies of a lipid transfer protein (LTP) encoding gene within less than 100,000 bp, four of which are potentially functional. Two of these are interrupted by LTR retrotransposons, in the intron and in the coding sequence, respectively. The divergence between sister LTRs of the retrotransposons inserted within the genes indicates that LTP gene duplication started earlier than 1.749 MYRS ago. On the whole, the results reported in this study confirm that the sunflower is an excellent system to study transposons dynamics and evolution.  相似文献   

14.
SINE-VNTR-Alu (SVA) elements are non-autonomous, hominid-specific non-LTR retrotransposons and distinguished by their organization as composite mobile elements. They represent the evolutionarily youngest, currently active family of human non-LTR retrotransposons, and sporadically generate disease-causing insertions. Since preexisting, genomic SVA sequences are characterized by structural hallmarks of Long Interspersed Elements 1 (LINE-1, L1)-mediated retrotransposition, it has been hypothesized for several years that SVA elements are mobilized by the L1 protein machinery in trans. To test this hypothesis, we developed an SVA retrotransposition reporter assay in cell culture using three different human-specific SVA reporter elements. We demonstrate that SVA elements are mobilized in HeLa cells only in the presence of both L1-encoded proteins, ORF1p and ORF2p. SVA trans-mobilization rates exceeded pseudogene formation frequencies by 12- to 300-fold in HeLa-HA cells, indicating that SVA elements represent a preferred substrate for L1 proteins. Acquisition of an AluSp element increased the trans-mobilization frequency of the SVA reporter element by ~25-fold. Deletion of (CCCTCT)(n) repeats and Alu-like region of a canonical SVA reporter element caused significant attenuation of the SVA trans-mobilization rate. SVA de novo insertions were predominantly full-length, occurred preferentially in G+C-rich regions, and displayed all features of L1-mediated retrotransposition which are also observed in preexisting genomic SVA insertions.  相似文献   

15.
16.

Background and Aims

Peanut (Arachis hypogaea) is an allotetraploid (AABB-type genome) of recent origin, with a genome of about 2·8 Gb and a high repetitive content. This study reports an analysis of the repetitive component of the peanut A genome using bacterial artificial chromosome (BAC) clones from A. duranensis, the most probable A genome donor, and the probable consequences of the activity of these elements since the divergence of the peanut A and B genomes.

Methods

The repetitive content of the A genome was analysed by using A. duranensis BAC clones as probes for fluorescence in situ hybridization (BAC-FISH), and by sequencing and characterization of 12 genomic regions. For the analysis of the evolutionary dynamics, two A genome regions are compared with their B genome homeologues.

Key Results

BAC-FISH using 27 A. duranensis BAC clones as probes gave dispersed and repetitive DNA characteristic signals, predominantly in interstitial regions of the peanut A chromosomes. The sequences of 14 BAC clones showed complete and truncated copies of ten abundant long terminal repeat (LTR) retrotransposons, characterized here. Almost all dateable transposition events occurred <3·5 million years ago, the estimated date of the divergence of A and B genomes. The most abundant retrotransposon is Feral, apparently parasitic on the retrotransposon FIDEL, followed by Pipa, also non-autonomous and probably parasitic on a retrotransposon we named Pipoka. The comparison of the A and B genome homeologous regions showed conserved segments of high sequence identity, punctuated by predominantly indel regions without significant similarity.

Conclusions

A substantial proportion of the highly repetitive component of the peanut A genome appears to be accounted for by relatively few LTR retrotransposons and their truncated copies or solo LTRs. The most abundant of the retrotransposons are non-autonomous. The activity of these retrotransposons has been a very significant driver of genome evolution since the evolutionary divergence of the A and B genomes.  相似文献   

17.
Retrotransposons are an ubiquitous component of plant genomes, especially abundant in species with large genomes. Populus trichocarpa has a relatively small genome, which was entirely sequenced; however, studies focused on poplar retrotransposons dynamics are rare. With the aim to study the retrotransposon component of the poplar genome, we have scanned the complete genome sequence searching full-length long-terminal repeat (LTR) retrotransposons, i.e., characterised by two long terminal repeats at the 5′ and 3′ ends. A computational approach based on detection of conserved structural features, on building multiple alignments, and on similarity searches was used to identify 1,479 putative full-length LTR retrotransposons. Ty1-copia elements were more numerous than Ty3-gypsy. However, many LTR retroelements were not assigned to any superfamily because lacking of diagnostic features and non-autonomous. LTR retrotransposon remnants were by far more numerous than full-length elements, indicating that during the evolution of poplar, large amplification of these elements was followed by DNA loss. Within superfamilies, Ty3-gypsy families are made of more members than Ty1-copia ones. Retrotransposition occurred with increasing frequency following the separation of Populus sections, with different waves of retrotransposition activity between Ty3-gypsy and Ty1-copia elements. Recently inserted elements appear more frequently expressed than older ones. Finally, different levels of activity of retrotransposons were observed according to their position and their density in the linkage groups. On the whole, the results support the view of retrotransposons as a community of different organisms in the genome, whose activity (both retrotransposition and DNA loss) has heavily impacted and probably continues to impact poplar genome structure and size.  相似文献   

18.
长末端重复序列(Long terminal repeat,LTR)反转录转座子是真核生物基因组中普遍存在的一类可移动的DNA序列,它们以RNA为媒介,通过"复制粘贴"机制在基因组中不断自我复制。在高等植物中,许多活性的LTR反转录转座子已被详尽研究并应用于分子标记技术、基因标签、插入型突变及基因功能等分析。本文对植物活性LTR反转录转座子进行全面的调查,并对其结构、拷贝数和分布以及转座特性进行系统的归纳,分析了植物活性LTR反转录转座子的gag(种属特异抗原)和pol(聚合酶)序列特征,以及LTR序列中顺式调控元件的分布。研究发现自主有活性的LTR反转录转座子必须具备LTR区域以及编码Gag、Pr、Int、Rt和Rh蛋白的基因区。其中两端LTR区域具有高度同源性且富含顺式调控元件;Rt蛋白必备RVT结构域;Rh蛋白必备RNase_H1_RT结构域。这些结果为后续植物活性LTR反转录转座子的鉴定和功能分析奠定了重要基础。  相似文献   

19.
The sex chromosomes of the silkworm Bombyx mori are designated ZW(XY) for females and ZZ (XX) for males. Numerous long terminal repeat (LTR) and non-LTR retrotransposons, retroposons and DNA transposons have accumulated as strata on the W chromosome. However, there are nucleotide sequences that do not show the characteristics of typical transposable elements on the W chromosome. To analyse these uncharacterized nucleotide sequences on the W chromosome, we used whole-genome shotgun (WGS) data and assembled data that was obtained using male genome DNA. Through these analyses, we found that almost all of these uncharacterized sequences were non-autonomous transposable elements that do not fit into the conventional classification. It is notable that some of these transposable elements contained the Bombyx short interspersed element (Bm1) sequences in the elements. We designated them as secondary-Bm1 transposable elements (SBTEs). Because putative ancestral SBTE nucleotide sequences without Bm1 do not occur in the WGS data, we suggest that the Bm1 sequences of SBTEs are not carried on each element merely as a package but are components of each element. Therefore, we confirmed that SBTEs should be classified as a new group of transposable elements.  相似文献   

20.
Retrovirus replication requires specialized transport mechanisms to export genomic mRNA from the nucleus to the cytoplasm of the infected cell. This regulation is mediated by a combination of viral and/or cellular factors that interact with cis-acting RNA export elements linking the viral RNA to the cellular CRM1 or NXF1 nuclear export pathways. Endogenous type D murine LTR retrotransposons (musD) were reported to contain an RNA export element located upstream of the 3'-LTR. Although functionally equivalent, the musD export element, termed the musD transport element, is distinct from the other retroviral RNA export elements, such as the constitutive transport element of simian/Mason-Pfizer monkey retroviruses and the RNA transport element found in rodent intracisternal A-particle LTR retrotransposons. We demonstrate here that the minimal RNA transport element (musD transport element) of musD comprises multiple secondary structure elements that presumably serve as recognition signals for the cellular export machinery. We identified two classes of tertiary interactions, namely kissing loops and a pseudoknot. This work constitutes the first example of an RNA transport element requiring such structural motifs to mediate nuclear export.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号