首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 341 毫秒
1.
The terminal enzyme of the respiratory chain, cytochrome c oxidase, consists of a hydrophobic reaction center formed by three mitochondrially encoded subunits with which 9–10 nuclear encoded subunits are associated. The three core subunits are synthesized on mitochondrial ribosomes and inserted into the inner membrane in a co-translational reaction facilitated by the Oxa1 insertase. Oxa1 consists of an N-terminal insertase domain and a C-terminal ribosome-binding region. Mutants lacking the C-terminal region show specific defects in co-translational insertion, suggesting that the close contact of the ribosome with the insertase promotes co-translational insertion of nascent chains. In this study, we inserted flexible linkers of 100 or 200 amino acid residues between the insertase domain and ribosome-binding region of Oxa1 of Saccharomyces cerevisiae. In the absence of the ribosome receptor Mba1, these linkers caused a length-dependent decrease in mitochondrial respiratory activity caused by diminished levels of cytochrome c oxidase. Interestingly, considerable amounts of mitochondrial translation products were still integrated into the inner membrane in these linker mutants. However, they showed severe defects in later stages of the biogenesis process, presumably during assembly into functional complexes. Our observations suggest that the close proximity of Oxa1 to ribosomes is not only used to improve membrane insertion but is also critical for the productive assembly of the subunits of the cytochrome c oxidase. This points to a role for Oxa1 in the spatial coordination of the ribosome with assembly factors that are critical for enzyme biogenesis.  相似文献   

2.
Members of the Oxa1/YidC family are involved in the biogenesis of membrane proteins. In bacteria, YidC catalyzes the insertion and assembly of proteins of the inner membrane. Mitochondria of animals, fungi, and plants harbor two distant homologues of YidC, Oxa1 and Cox18/Oxa2. Oxa1 plays a pivotal role in the integration of mitochondrial translation products into the inner membrane of mitochondria. It contains a C-terminal ribosome-binding domain that physically interacts with mitochondrial ribosomes to facilitate the co-translational insertion of nascent membrane proteins. The molecular function of Cox18/Oxa2 is not well understood. Employing a functional complementation approach with mitochondria-targeted versions of YidC we show that YidC is able to functionally replace both Oxa1 and Cox18/Oxa2. However, to integrate mitochondrial translation products into the inner membrane of mitochondria, the ribosome-binding domain of Oxa1 has to be appended onto YidC. On the contrary, the fusion of the ribosome-binding domain onto YidC prevents its ability to complement COX18 mutants suggesting an indispensable post-translational activity of Cox18/Oxa2. Our observations suggest that during evolution of mitochondria from their bacterial ancestors the two descendents of YidC functionally segregated to perform two distinct activities, one co-translational and one post-translational.  相似文献   

3.
The yeast mitochondrial Oxa1 protein is a member of the conserved Oxa1/YidC/Alb3 protein family involved in the membrane insertion of proteins. Oxa1 mediates the insertion of proteins (nuclearly and mitochondrially encoded) into the inner membrane. The mitochondrially encoded substrates interact directly with Oxa1 during their synthesis as nascent chains and in a manner that is supported by the associated ribosome. We have investigated if the Oxa1 complex interacts with the mitochondrial ribosome. Evidence to support a physical association between Oxa1 and the large ribosomal subunit is presented. Our data indicate that the matrix-exposed C-terminal region of Oxa1 plays an important role supporting the ribosomal-Oxa1 interaction. Truncation of this C-terminal segment compromises the ability of Oxa1 to support insertion of substrate proteins into the inner membrane. Oxa1 can be cross-linked to Mrp20, a component of the large ribosomal subunit. Mrp20 is homologous to L23, a subunit located next to the peptide exit tunnel of the ribosome. We propose that the interaction of Oxa1 with the ribosome serves to enhance a coupling of translation and membrane insertion events.  相似文献   

4.
Hell K  Neupert W  Stuart RA 《The EMBO journal》2001,20(6):1281-1288
Oxa1p is a member of the conserved Oxa1/YidC/Alb3 protein family involved in the membrane insertion of proteins. Oxa1p has been shown previously to directly facilitate the export of the N-terminal domains of membrane proteins across the inner membrane to the intermembrane space of mitochondria. Here we report on a general role of Oxa1p in the membrane insertion of proteins. (i) The function of Oxa1p is not limited to the insertion of membrane proteins that undergo N-terminal tail export; rather, it also extends to the insertion of other polytopic proteins such as the mitochondrially encoded Cox1p and Cox3p proteins. These are proteins whose N-termini are retained in the mitochondrial matrix. (ii) Oxa1p interacts directly with these substrates prior to completion of their synthesis. (iii) The interaction of Oxa1p with its substrates is particularly strong when nascent polypeptide chains are inserted into the inner membrane, suggesting a direct function of Oxa1p in co-translational insertion from the matrix. Taken together, we conclude that the Oxa1 complex represents a general membrane protein insertion machinery in the inner membrane of mitochondria.  相似文献   

5.
The biogenesis of mitochondria requires the insertion of both nuclear and mitochondrially encoded proteins into the inner membrane. The inner membrane protein Oxa1 plays an important role in this process. Translocation of the terminal intermembrane space domains of subunit 2 of the cytochrome oxidase complex, Cox2, strictly depends on Oxa1. In contrast, other Oxa1 substrates can be inserted independently of Oxa1 function, although at reduced efficiency. A Saccharomyces cerevisiae mutant containing a large deletion in its mitochondrial genome allowed us to analyze the insertion process of a fusion protein of cytochrome b and Cox2. In this mutant, the N-terminal domain of Cox2 is synthesized as a hairpin loop that is flanked by hydrophobic transmembrane segments on both sides. Both genetic and biochemical evidences indicate that translocation of this region across the inner membrane still requires Oxa1 function. Thus, the position of intermembrane space domains within protein sequences does not appear to determine their dependence on the Oxa1 translocase. Our observations rather suggest that the dependence on Oxa1 correlates with the net charge of the domain that has to be translocated across the lipid bilayer.  相似文献   

6.
Members of the family of the polytopic inner membrane proteins are related to Saccharomyces cerevisiae Oxa1 function in the assembly of energy transducing complexes of mitochondria and chloroplasts. Here we focus on the two mitochondrial members of this family, Oxa1 and Cox18, reviewing studies on their biogenesis as well as their functions, reflected in the phenotypic consequences of their absence in various organisms. In yeast, cytochrome c oxidase subunit II (Cox2) is a key substrate of these proteins. Oxa1 is required for co-translational translocation and insertion of Cox2, while Cox18 is necessary for the export of its C-terminal domain. Genetic and biochemical strategies have been used to investigate the functions of distinct domains of Oxa1 and to identify its partners in protein insertion/translocation. Recent work on the related bacterial protein YidC strongly indicates that it is capable of functioning alone as a translocase for hydrophilic domains and an insertase for TM domains. Thus, the Oxa1 and Cox18 probably catalyze these reactions directly in a co- and/or posttranslational way. In various species, Oxa1 appears to assist in the assembly of different substrate proteins, although it is still unclear how Oxa1 recognizes its substrates, and whether additional factors participate in this beyond its direct interaction with mitochondrial ribosomes, demonstrated in S. cerevisiae. Oxa1 is capable of assisting posttranslational insertion and translocation in isolated mitochondria, and Cox18 may posttranslationally translocate its only known substrate, the Cox2 C-terminal domain, in vivo. Detailed understanding of the mechanisms of action of these two proteins must await the resolution of their structure in the membrane and the development of a true in vitro mitochondrial translation system.  相似文献   

7.
The genome of mitochondria encodes a small number of very hydrophobic polypeptides that are inserted into the inner membrane in a cotranslational reaction. The molecular process by which mitochondrial ribosomes are recruited to the membrane is poorly understood. Here, we show that the inner membrane protein Mba1 binds to the large subunit of mitochondrial ribosomes. It thereby cooperates with the C-terminal ribosome-binding domain of Oxa1, which is a central component of the insertion machinery of the inner membrane. In the absence of both Mba1 and the C-terminus of Oxa1, mitochondrial translation products fail to be properly inserted into the inner membrane and serve as substrates of the matrix chaperone Hsp70. We propose that Mba1 functions as a ribosome receptor that cooperates with Oxa1 in the positioning of the ribosome exit site to the insertion machinery of the inner membrane.  相似文献   

8.
In humans the mitochondrial inner membrane protein Oxa1L is involved in the biogenesis of membrane proteins and facilitates the insertion of both mitochondrial- and nuclear-encoded proteins from the mitochondrial matrix into the inner membrane. The C-terminal ∼100-amino acid tail of Oxa1L (Oxa1L-CTT) binds to mitochondrial ribosomes and plays a role in the co-translational insertion of mitochondria-synthesized proteins into the inner membrane. Contrary to suggestions made for yeast Oxa1p, our results indicate that the C-terminal tail of human Oxa1L does not form a coiled-coil helical structure in solution. The Oxa1L-CTT exists primarily as a monomer in solution but forms dimers and tetramers at high salt concentrations. The binding of Oxa1L-CTT to mitochondrial ribosomes is an enthalpy-driven process with a Kd of 0.3–0.8 μm and a stoichiometry of 2. Oxa1L-CTT cross-links to mammalian mitochondrial homologs of the bacterial ribosomal proteins L13, L20, and L28 and to mammalian mitochondrial specific ribosomal proteins MRPL48, MRPL49, and MRPL51. Oxa1L-CTT does not cross-link to proteins decorating the conventional exit tunnel of the bacterial large ribosomal subunit (L22, L23, L24, and L29).  相似文献   

9.
Oxa1 is the mitochondrial representative of a family of related proteins that mediate the insertion of substrate proteins into the membranes of bacteria, chloroplasts, and mitochondria. Several studies have demonstrated that the bacterial homologue YidC participates both in the direct uptake of proteins from the bacterial cytosol, and in the uptake of nascent proteins from the Sec translocase. Studies on the biogenesis of membrane proteins in mitochondria established that Oxa1 has the capability to receive substrates at the inner surface of the inner membrane. In this study, we asked if Oxa1 may similarly cooperate with a protein translocase within the membrane. Since Oxa1 is involved in its own biogenesis, we used the precursor of Oxa1 as a model protein and investigated its import pathway. We found that immediately after import into mitochondria, Oxa1 initially accumulates at Tim23 that forms the inner membrane protein translocase. Cleavage of the Oxa1 presequence is dependent on mtHsp70, a heat shock protein of the mitochondrial matrix. However, mutant mtHsp70 showing a defect in the release of bound substrate proteins does not interfere with subsequent membrane insertion, indicating that membrane insertion of the mature protein is essentially mtHsp70-independent. We conclude that Oxa1 has the ability to accept preproteins within the membrane.  相似文献   

10.
Saccharomyces cerevisiae Mdm38 and Ylh47 are homologues of human Letm1, a protein implicated in Wolf-Hirschhorn syndrome. We analyzed the function of Mdm38 and Ylh47 in yeast mitochondria to gain insight into the role of Letm1. We find that mdm38Delta mitochondria have reduced amounts of certain mitochondrially encoded proteins and low levels of complex III and IV and accumulate unassembled Atp6 of complex V of the respiratory chain. Mdm38 is especially required for efficient transport of Atp6 and cytochrome b across the inner membrane, whereas Ylh47 plays a minor role in this process. Both Mdm38 and Ylh47 form stable complexes with mitochondrial ribosomes, similar to what has been reported for Oxa1, a central component of the mitochondrial export machinery. Our results indicate that Mdm38 functions as a component of an Oxa1-independent insertion machinery in the inner membrane and that Mdm38 plays a critical role in the biogenesis of the respiratory chain by coupling ribosome function to protein transport across the inner membrane.  相似文献   

11.
The inner membrane of mitochondria is especially protein-rich. To direct proteins into the inner membrane, translocases mediate transport and membrane insertion of precursor proteins. Although the majority of mitochondrial proteins are imported from the cytoplasm, core subunits of respiratory chain complexes are inserted into the inner membrane from the matrix. Oxa1, a conserved membrane protein, mediates the insertion of mitochondrion-encoded precursors into the inner mitochondrial membrane. The molecular mechanism by which Oxa1 mediates insertion of membrane spans, entailing the translocation of hydrophilic domains across the inner membrane, is still unknown. We investigated if Oxa1 could act as a protein-conducting channel for precursor transport. Using a biophysical approach, we show that Oxa1 can form a pore capable of accommodating a translocating protein segment. After purification and reconstitution, Oxa1 acts as a cation-selective channel that specifically responds to mitochondrial export signals. The aqueous pore formed by Oxa1 displays highly dynamic characteristics with a restriction zone diameter between 0.6 and 2 nm, which would suffice for polypeptide translocation across the membrane. Single channel analyses revealed four discrete channels per active unit, suggesting that the Oxa1 complex forms several cooperative hydrophilic pores in the inner membrane. Hence, Oxa1 behaves as a pore-forming translocase that is regulated in a membrane potential and substrate-dependent manner.  相似文献   

12.
The inner mitochondrial membrane harbors a large number of proteins that display a wide range of topological arrangements. The majority of these proteins are encoded in the cell's nucleus, but a few polytopic proteins, all subunits of respiratory chain complexes are encoded by the mitochondrial genome. A number of distinct sorting mechanisms exist to direct these proteins into the mitochondrial inner membrane. One of these pathways involves the export of proteins from the matrix into the inner membrane and is used by both proteins synthesized within the mitochondria, as well as by a subset of nuclear encoded proteins. Prior to embarking on the export pathway, nuclear encoded proteins using this sorting route are initially imported into the mitochondrial matrix from the cytosol, their site of synthesis. Protein export from the matrix into the inner membrane bears similarities to Sec-independent protein export in bacteria and requires the function of the Oxa1 protein. Oxa1 is a component of a general protein insertion site in yeast mitochondrial inner membrane used by both nuclear and mitochondrial DNA encoded proteins. Oxa1 is a member of the conserved Oxa1/YidC/Alb3 protein family found throughout prokaryotes throughout eukaryotes (where it is found in mitochondria and chloroplasts). The evidence to demonstrate that the Oxa1/YidC/Alb3 protein family represents a novel evolutionarily conserved membrane insertion machinery is reviewed here.  相似文献   

13.
The mammalian mitochondrial inner membrane protein Oxa1L is involved in the insertion of a number of mitochondrial translation products into the inner membrane. During this process, the C-terminal tail of Oxa1L (Oxa1L-CTT) binds mitochondrial ribosomes and is believed to coordinate the synthesis and membrane insertion of the nascent chains into the membrane. The C-terminal tail of Oxa1L does not contain any Cys residues. Four variants of this protein with a specifically placed Cys residue at position 4, 39, 67, or 94 of Oxa1L-CTT have been prepared. These Cys residues have been derivatized with a fluorescent probe, tetramethylrhodamine-5-maleimide, for biophysical studies. Oxa1L-CTT forms oligomers cooperatively with a binding constant in the submicromolar range. Fluorescence anisotropy and fluorescence lifetime measurements indicate that contacts near a long helix close to position 39 of Oxa1L-CTT occur during oligomer formation. Fluorescence correlation spectroscopy measurements demonstrate that all of the Oxa1L-CTT derivatives bind to mammalian mitochondrial ribosomes. Steady-state fluorescence quenching and fluorescence lifetime data indicate that there are extensive contacts between Oxa1L-CTT and the ribosome-encompassing regions around positions 39, 67, and 94. The results of this study suggest that Oxa1L-CTT undergoes conformational changes and induced oligomer formation when it binds to the ribosome.  相似文献   

14.
The Oxa1 protein plays a central role in facilitating the cotranslational insertion of the nascent polypeptide chains into the mitochondrial inner membrane. Mitochondrially encoded proteins are synthesized on matrix-localized ribosomes which are tethered to the inner membrane and in physical association with the Oxa1 protein. In the present study we used a chemical cross-linking approach to map the Saccharomyces cerevisiae Oxa1-ribosome interface, and we demonstrate here a close association of Oxa1 and the large ribosomal subunit protein, MrpL40. Evidence to indicate that a close physical and functional relationship exists between MrpL40 and another large ribosomal protein, the Mrp20/L23 protein, is also provided. MrpL40 shares sequence features with the bacterial ribosomal protein L24, which like Mrp20/L23 is known to be located adjacent to the ribosomal polypeptide exit site. We propose therefore that MrpL40 represents the Saccharomyces cerevisiae L24 homolog. MrpL40, like many mitochondrial ribosomal proteins, contains a C-terminal extension region that bears no similarity to the bacterial counterpart. We show that this C-terminal mitochondria-specific region is important for MrpL40''s ability to support the synthesis of the correct complement of mitochondrially encoded proteins and their subsequent assembly into oxidative phosphorylation complexes.The mitochondrial genome encodes a small, but important, number of proteins (8). These proteins are predominantly essential components of the mitochondrial oxidative phosphorylation (OXPHOS) machinery. In the yeast Saccharomyces cerevisiae the proteins encoded by the mitochondrial DNA (mtDNA) include cytochrome c oxidase subunits Cox1, Cox2, and Cox3, cytochrome b of the cytochrome bc1 complex, F1Fo-ATP synthase subunits Atp6, Atp8, and Atp9, and the small ribosomal subunit component Var1. With the exception of Var1, these mitochondrially encoded proteins are integral membrane proteins which become inserted into the inner membrane during their synthesis on mitochondrial ribosomes tethered to the inner membrane (11, 19, 29, 32, 34). The cotranslational membrane insertion of these proteins is achieved by maintaining a close physical association of the ribosomes to the inner membrane at sites where the insertion machinery exists (19, 31, 32).Oxa1 is an inner membrane protein that forms a central component of the insertion machinery, whose presence is required for the cotranslational membrane insertion of the mitochondrially encoded proteins (4-6, 15-17). The Oxa1 protein has been shown to physically associate with the ribosomes and more specifically with the large ribosomal subunit. Matrix-exposed elements of the Oxa1 protein, such as its hydrophilic C-terminal tail, support this Oxa1-ribosome interaction (19, 32). Furthermore, in intact mitochondria we have previously demonstrated that Oxa1 can be chemically cross-linked to Mrp20, a component of the large ribosomal subunit (19). Mrp20 is homologous to the bacterial ribosomal protein L23, a component known from the structural analysis of the ribosomes to be located next to the polypeptide exit site of the large ribosomal subunit (3, 10, 23, 27, 30). Thus, it was concluded that Oxa1, the site of membrane insertion into the inner membrane, exists in close physical proximity to the large ribosomal subunit and specifically to that region of the ribosomes where the nascent chain emerges. This close physical relationship between ribosomal components and the Oxa1 insertion site has been proposed to support a tight coordination between the protein translation and membrane insertion events (19, 31, 32). Given the strong hydrophobicity of the OXPHOS complex subunits which are encoded by the mitochondrial DNA and synthesized by these ribosomes, a close coupling of the translation and insertion events is proposed to ensure that the hydrophobic nascent chains are directly inserted into the membrane during their synthesis. The exposure of hydrophobic nascent chains to the hydrophilic matrix space may promote their aggregation and thus incompetency for subsequence membrane insertion.In bacteria, the L23 protein has been implicated to play a direct role in the cotranslational insertion of proteins into the membrane (7, 13, 24, 33). Thus, it is possible that proteins adjacent to the polypeptide exit site of mitochondrial ribosomes may be directly involved in targeting ribosomes to specific regions of the inner membrane where the membrane insertion and subsequent assembly events occur. The mitochondrial ribosomes resemble their prokaryotic ancestors in some respects, e.g., antibiotic sensitivity, but they differ in a number of important ways (1, 12, 22, 30). In general, the protein content of the mitochondrial ribosomes is greater than their bacterial counterparts. This increase in protein content is largely attributed to the fact that the mitochondrial ribosomal proteins are larger in size than their bacterial homologs. Over the course of evolution, many of the mitochondrial ribosomal proteins have acquired novel extensions, new domains, in addition to their bacterial homology domains. These acquired extensions not only include N-terminal (often cleavable) signals to target these proteins (nuclear encoded) to the mitochondria but also in many instances large C-terminal extensions, which are unique to the mitochondrial ribosomal proteins and have thus been termed “mitospecific domains” (12, 30). Largely uncharacterized, the functional relevance of these various mitospecific domains of the ribosomal proteins remains unknown. It is speculated that some (or all) of these mitospecific domains serve to ensure that the ribosome becomes assembled and is translationally active while bound to the inner membrane surface.In the present study we sought to further characterize the interaction of the mitochondrial ribosome with the Oxa1 protein. We show here that MrpL40, a large ribosomal subunit component, is physically close to both the Mrp20 and Oxa1 proteins, demonstrating the proximity of MrpL40 to both the ribosomal polypeptide exit site and the Oxa1 membrane insertion site. MrpL40 contains a large C-terminal mitospecific domain, which includes a predicted α-helical region at its extreme C-terminal end. The results presented here highlight that the integrity of this domain of MrpL40 is crucial to ensure ribosome translational fidelity and subsequent OXPHOS complex assembly.  相似文献   

15.
The biogenesis of mitochondria requires the integration of many proteins into the inner membrane from the matrix side. The inner membrane protein Oxa1 plays an important role in this process. We identified Mba1 as a second mitochondrial component that is required for efficient protein insertion. Like Oxa1, Mba1 specifically interacts both with mitochondrial translation products and with conservatively sorted, nuclear-encoded proteins during their integration into the inner membrane. Oxa1 and Mba1 overlap in function and substrate specificity, but both can act independently of each other. We conclude that Mba1 is part of the mitochondrial protein export machinery and represents the first component of a novel Oxa1-independent insertion pathway into the mitochondrial inner membrane.  相似文献   

16.
Two multisubunit protein complexes for membrane protein insertion were recently identified in the endoplasmic reticulum (ER): the guided entry of tail anchor proteins (GET) complex and ER membrane complex (EMC). The structures of both of their hydrophobic core subunits, which are required for the insertion reaction, revealed an overall similarity to the YidC/Oxa1/Alb3 family members found in bacteria, mitochondria, and chloroplasts. This suggests that these membrane insertion machineries all share a common ancestry. To test whether these ER proteins can functionally replace Oxa1 in yeast mitochondria, we generated strains that express mitochondria-targeted Get2–Get1 and Emc6–Emc3 fusion proteins in Oxa1 deletion mutants. Interestingly, the Emc6–Emc3 fusion was able to complement an Δoxa1 mutant and restored its respiratory competence. The Emc6–Emc3 fusion promoted the insertion of the mitochondrially encoded protein Cox2, as well as of nuclear encoded inner membrane proteins, although was not able to facilitate the assembly of the Atp9 ring. Our observations indicate that protein insertion into the ER is functionally conserved to the insertion mechanism in bacteria and mitochondria and adheres to similar topological principles.

Redirecting the core subunits of the protein membrane insertion complex EMC into mitochondria rescues cells deficient for the mitochondrial Oxa1 system; this supports the hypothesis that the machinery for protein insertion into the ER membrane is functionally analogous to the YidC/Oxa1/Alb3 family of bacteria, mitochondria and chloroplasts.  相似文献   

17.
The mitochondrial inner membrane contains numerous multispanning integral proteins. The precursors of these hydrophobic proteins are synthesized in the cytosol and therefore have to cross the mitochondrial outer membrane and intermembrane space to reach the inner membrane. While the import pathways of noncleavable multispanning proteins, such as the metabolite carriers, have been characterized in detail by the generation of translocation intermediates, little is known about the mechanism by which cleavable preproteins of multispanning proteins, such as Oxa1, are transferred from the outer membrane to the inner membrane. We have identified a translocation intermediate of the Oxa1 preprotein in the translocase of the outer membrane (TOM) and found that there are differences from the import mechanisms of carrier proteins. The intermembrane space domain of the receptor Tom22 supports the stabilization of the Oxa1 intermediate. Transfer of the Oxa1 preprotein to the inner membrane is not affected by inactivation of the soluble TIM complexes. Both the inner membrane potential and matrix heat shock protein 70 are essential to release the preprotein from the TOM complex, suggesting a close functional cooperation of the TOM complex and the presequence translocase of the inner membrane. We conclude that mitochondria employ different mechanisms for translocation of multispanning proteins across the aqueous intermembrane space.  相似文献   

18.
The Oxa1 protein is a well-conserved integral protein of the inner membrane of mitochondria. It mediates the insertion of both mitochondrial- and nuclear-encoded proteins from the matrix into the inner membrane. We investigated the distribution of budding yeast Oxa1 between the two subdomains of the contiguous inner membrane--the cristae membrane (CM) and the inner boundary membrane (IBM)--under different physiological conditions. We found that under fermentable growth conditions, Oxa1 is enriched in the IBM, whereas under nonfermentable (respiratory) growth conditions, it is predominantly localized in the CM. The enrichment of Oxa1 in the CM requires mitochondrial translation; similarly, deletion of the ribosome-binding domain of Oxa1 prevents an enrichment of Oxa1 in the CM. The predominant localization in the IBM under fermentable growth conditions is prevented by inhibiting mitochondrial protein import. Furthermore, overexpression of the nuclear-encoded Oxa1 substrate Mdl1 shifts the distribution of Oxa1 toward the IBM. Apparently, the availability of nuclear- and mitochondrial-encoded substrates influences the inner-membrane distribution of Oxa1. Our findings show that the distribution of Oxa1 within the inner membrane is dynamic and adapts to different physiological needs.  相似文献   

19.
In Escherichia coli, both secretory and inner membrane proteins initially are targeted to the core SecYEG inner membrane translocase. Previous work has also identified the peripherally associated SecA protein as well as the SecD, SecF and YajC inner membrane proteins as components of the translocase. Here, we use a cross-linking approach to show that hydrophilic portions of a co-translationally targeted inner membrane protein (FtsQ) are close to SecA and SecY, suggesting that insertion takes place at the SecA/Y interface. The hydrophobic FtsQ signal anchor sequence contacts both lipids and a novel 60 kDa translocase-associated component that we identify as YidC. YidC is homologous to Saccharomyces cerevisiae Oxa1p, which has been shown to function in a novel export pathway at the mitochondrial inner membrane. We propose that YidC is involved in the insertion of hydrophobic sequences into the lipid bilayer after initial recognition by the SecAYEG translocase.  相似文献   

20.
Cytochrome oxidase subunits I, II, and III, the mitochondrial DNA-encoded proteins, are inserted across the inner membrane by the Oxa1p-containing translocator in a membrane potential-dependent manner. Oxa1p is also involved in the insertion of the cytoplasmically synthesized precursor of Oxa1p itself into the inner membrane from the matrix via the conservative sorting pathway. The mechanism of insertion of the other mitochondrially synthesized proteins, however, is unexplored. The insertion of the mitochondrial DNA-encoded subunit 8 of F(1)F(0)-ATPase (Su8) across the inner membrane was analyzed in vitro using the inverted inner membrane vesicles and the Escherichia coli lysate-synthesized substrate. This assay revealed that the N-terminal segment of Su8 inserted across the membrane to the intermembrane space and assumed the correct trans-cis topology depending on the mitochondrial matrix fraction. This translocation reaction was similar to those of Sec-independent, direct insertion pathways of E. coli and chloroplast thylakoid membranes. (i) It required neither nucleotide triphosphates nor membrane potential, and hydrophobic forces drove the process. (ii) It did not require protease-sensitive membrane components facing the matrix space. (iii) It could be inserted across liposomes in the correct topology in a matrix fraction-dependent manner. Thus, a novel mechanism conserved in bacteria and chloroplasts also functions in the insertion of Su8 across the mitochondrial inner membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号