首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Knowing in your heart what's right   总被引:1,自引:0,他引:1  
  相似文献   

2.
The heart is divided into four chambers by membranous septa and valves. Although evidence suggests that formation of the membranous septa requires migration of neural crest cells into the developing heart, the functional significance of these neural crest cells in the development of the endocardial cushion, an embryonic tissue that gives rise to the membranous appendages, is largely unknown. Mice defective in the protease region of Meltrin beta/ADAM19 show ventricular septal defects and defects in valve formation. In this study, by expressing Meltrin beta in either endothelial or neural crest cell lineages, we showed that Meltrin beta expressed in neural crest cells but not in endothelial cells was required for formation of the ventricular septum and valves. Although Meltrin beta-deficient neural crest cells migrated into the heart normally, they could not properly fuse the right and left ridges of the cushion tissues in the proximal outflow tract (OT), and this led to defects in the assembly of the OT and AV cushions forming the ventricular septum. These results genetically demonstrated a critical role of cardiac neural crest cells expressing Meltrin beta in triggering fusion of the proximal OT cushions and in formation of the ventricular septum.  相似文献   

3.
4.
5.
Abstract The epicardium is embryologically formed by outgrowth of proepicardial cells over the naked heart tube. Epicardium-derived cells (EPDCs) migrate into the myocardium, contributing to myocardial architecture, valve development, and the coronary vasculature. Defective EPDC formation causes valve malformations, myocardial thinning, and coronary defects. In the atrioventricular (AV) valves and the fibrous heart skeleton isolating atrial from ventricular myocardium, EPDCs colocalize with periostin, a matrix molecule involved in remodeling. We investigated whether proepicardial outgrowth inhibition affected periostin expression and how this related to development of the AV valves and fibrous heart skeleton.
Periostin expression by epicardium and EPDCs was confirmed in vitro in primary cultures of human and quail EPDCs. Disturbing EPDC formation in quail embryos reduced periostin expression in the endocardial cushions and AV junction. Disturbed fibrous tissue development resulted in AV myocardial connections reflected by preexcitation electrocardiographic patterns.
We conclude that EPDCs are local producers of periostin. Disturbance of EPDC formation results in decreased cardiac periostin levels and hampers the development of fibrous tissue in AV junction and the developing AV valves. The resulting cardiac anomalies might link to Wolff–Parkinson White syndrome with persistent AV myocardial connections.  相似文献   

6.
《Biophysical journal》2020,118(3):742-752
In mammals and birds, embryonic development of the heart involves conversion of a straight tubular structure into a three-dimensional helical loop, which is a chiral structure. We investigated theoretically the mechanism of helical loop formation of the mouse embryonic heart, especially focusing on determination of left-/right-handedness of the helical loop. In geometrical terms, chirality is the result of the combination of three axial asymmetries in three-dimensional space. We hypothesized the following correspondences between axial asymmetries and morphogenesis (bending and displacement): the dorsal-ventral asymmetry by ventral bending of a straight tube of the initial heart and the left-right and anterior-posterior asymmetries, the left-right asymmetry by rightward displacement of the heart tube, which is confined to the anterior region of the tube. Morphogenesis of chiral looping of the embryonic heart is a large-scaled event of the multicellular system in which substantial physical force operates dynamically. Using computer simulations with a cell-based physico-mechanical model and experiments with mouse embryos, we confirmed the hypothesis. We conclude that rightward displacement of the tube determines the left-handed screw of the loop. The process of helix loop formation consists of three steps: 1) the left-right biasing system involving Nodal-related signals that leads to left-right asymmetry in the embryonic body; 2) the rightward displacement of the tube; and finally 3) the left-handed helical looping. Step 1 is already established. Step 3 is elucidated by our study, which highlights the need for step 2 to be clarified; namely, we explore how the left-right asymmetry in the embryonic body leads to the rightward displacement of the heart tube.  相似文献   

7.
Eph proteins are receptor tyrosine kinases that control changes in cell shape and migration during development. We now describe a critical role for EphA3 receptor signaling in heart development as revealed by the phenotype of EphA3 null mice. During heart development mesenchymal outgrowths, the atrioventricular endocardial cushions, form in the atrioventricular canal. This morphogenetic event requires endocardial cushion cells to undergo an epithelial to mesenchymal transformation (EMT), and results in the formation of the atrioventricular valves and membranous portions of the atrial and ventricular septa. We show that EphA3 knockouts have significant defects in the development of their atrial septa and atrioventricular endocardial cushions, and that these cardiac abnormalities lead to the death of approximately 75% of homozygous EphA3(-/-) mutants. We demonstrate that EphA3 and its ligand, ephrin-A1, are expressed in adjacent cells in the developing endocardial cushions. We further demonstrate that EphA3(-/-) atrioventricular endocardial cushions are hypoplastic compared to wildtype and that EphA3(-/-) endocardial cushion explants give rise to fewer migrating mesenchymal cells than wildtype explants. Thus our results indicate that EphA3 plays a crucial role in the development and morphogenesis of the cells that give rise to the atrioventricular valves and septa.  相似文献   

8.
9.
10.
11.
The vertebrate embryonic heart first forms as a valveless tube that pumps blood using waves of contraction. As the heart develops, the atrium and ventricle bulge out from the heart tube, and valves begin to form through the expansion of the endocardial cushions. As a result of changes in geometry, conduction velocities, and material properties of the heart wall, the fluid dynamics and resulting spatial patterns of shear stress and transmural pressure change dramatically. Recent work suggests that these transitions are significant because fluid forces acting on the cardiac walls, as well as the activity of myocardial cells that drive the flow, are necessary for correct chamber and valve morphogenesis. In this article, computational fluid dynamics was used to explore how spatial distributions of the normal forces acting on the heart wall change as the endocardial cushions grow and as the cardiac wall increases in stiffness. The immersed boundary method was used to simulate the fluid-moving boundary problem of the cardiac wall driving the motion of the blood in a simplified model of a two-dimensional heart. The normal forces acting on the heart walls increased during the period of one atrial contraction because inertial forces are negligible and the ventricular walls must be stretched during filling. Furthermore, the force required to fill the ventricle increased as the stiffness of the ventricular wall was increased. Increased endocardial cushion height also drastically increased the force necessary to contract the ventricle. Finally, flow in the moving boundary model was compared to flow through immobile rigid chambers, and the forces acting normal to the walls were substantially different.  相似文献   

12.
13.
Retinoic acid is clearly important for the development of the heart. In this paper, we provide evidence that retinoic acid is essential for multiple aspects of cardiogenesis in Xenopus by examining embryos that have been exposed to retinoic acid receptor antagonists. Early in cardiogenesis, retinoic acid alters the expression of key genes in the lateral plate mesoderm including Nkx2.5 and HAND1, indicating that early patterning of the lateral plate mesoderm is, in part, controlled by retinoic acid. We found that, in Xenopus, the transition of the heart from a sheet of cells to a tube required retinoic acid signaling. The requirement for retinoic acid signaling was determined to take place during a narrow window of time between embryonic stages 14 and 18, well before heart tube closure. At the highest doses used, the lateral fields of myocardium fail to fuse, intermediate doses lead to a fusion of the two sides but failure to form a tube, and embryos exposed to lower concentrations of antagonist form a heart tube that failed to complete all the landmark changes that characterize looping. The myocardial phenotypes observed when exposed to the retinoic acid antagonist resemble the myocardium from earlier stages of cardiogenesis, although precocious expression of cardiac differentiation markers was not seen. The morphology of individual cells within the myocardium appeared immature, closely resembling the shape and size of cells at earlier stages of development. However, the failures in morphogenesis are not merely a slowing of development because, even when allowed to develop through stage 40, the heart tubes did not close when embryos were exposed to high levels of antagonist. Indeed, some aspects of left-right asymmetry also remained even in hearts that never formed a tube. These results demonstrate that components of the retinoic acid signaling pathway are necessary for the progression of cardiac morphogenesis in Xenopus.  相似文献   

14.
The anatomic relationship of the aortic and mitral valves is a useful landmark in assessing congenital heart malformations. The atrioventricular and semilunar valve regions originate in widely separated parts of the early embryonic heart tube, and the process by which the normal fibrous continuity between the aortic and mitral valves is acquired has not been clearly defined. The development of the aortic and mitral valve relationship was studied in normal human embryos in the Carnegie Embryological Collection, and specimens of Carnegie stages 13, 15, 17, 19, and 23, prepared as serial histologic sections cut in the sagittal plane, were selected for reconstruction. In stage 13, the atrioventricular valve area is separated from the semilunar valve area by the large bend between the atrioventricular and outflow-tract components of the single lumen heart tube created by the left interventricular sulcus. In stages 15 and 17, the aortic valve rotates into a position near the atrioventricular valves with development of four chambers and a double circulation. In stage 19, there is fusion of aortic and mitral endocardial cushion material along the endocardial surface of the interventricular flange, and this relationship is maintained in subsequent stages. Determination of three-dimensional Cartesian coordinates of the midpoints of valve positions shows that, while there is growth of intervalvular distances up to stage 17, the aortic to mitral distance is essentially unchanged thereafter. During the period studied, the left ventricle increases in length over threefold. The relative lack of growth in the saddle-shaped fold between the atrioventricular and outflow tract components of the heart, contrasting with the rapid growth of the outwardly convex components of most of the atrial and ventricular walls, may be attributed to the different mechanical properties of the two configurations. It is postulated that the pathogenesis of congenital heart malformations, which characteristically have failure of development of aortic and mitral valve continuity, may involve abnormalities of rotation of the aortic region or malpositioning of the fold in the heart tube.  相似文献   

15.
Heart valve malformations are one of the most common types of birth defects, illustrating the complex nature of valve development. Vascular endothelial growth factor (VEGF) signaling is one pathway implicated in valve formation, however its specific spatial and temporal roles remain poorly defined. To decipher these contributions, we use two inducible dominant negative approaches in mice to disrupt VEGF signaling at different stages of embryogenesis. At an early step in valve development, VEGF signals are required for the full transformation of endocardial cells to mesenchymal cells (EMT) at the outflow tract (OFT) but not atrioventricular canal (AVC) endocardial cushions. This role likely involves signaling mediated by VEGF receptor 1 (VEGFR1), which is highly expressed in early cushion endocardium before becoming downregulated after EMT. In contrast, VEGFR2 does not exhibit robust cushion endocardium expression until after EMT is complete. At this point, VEGF signaling acts through VEGFR2 to direct the morphogenesis of the AVC cushions into mature, elongated valve leaflets. This latter role of VEGF requires the VEGF-modulating microRNA, miR-126. Thus, VEGF roles in the developing valves are dynamic, transitioning from a differentiation role directed by VEGFR1 in the OFT to a morphogenetic role through VEGFR2 primarily in the AVC-derived valves.  相似文献   

16.
Heart development begins with the induction of cardiogenic cells from the embryonic mesoderm, followed by the coalescing of these cells into a linear heart tube. Subsequent looping of the heart tube brings the rudimentary atria and ventricles into alignment for further development into the four-chambered heart. Underlying these morphologic events is a complex program of signaling between cells and tissues that orchestrates their participation in heart development. Among these signals are bone morphogenetic proteins, fibroblast growth factors, Wnts, Hedgehog, and members of the transforming growth factor-beta family of signaling molecules. We review here the various properties of these signaling molecules and their signal transduction pathways in hopes of providing a greater appreciation of the molecular events driving heart development.  相似文献   

17.
During vertebrate heart valve formation, Wnt/β-catenin signaling induces BMP signals in atrioventricular canal (AVC) myocardial cells and underlying AVC endocardial cells then undergo endothelial-mesenchymal transdifferentiation (EMT) by receiving this BMP signals. Histone deacetylases (HDACs) have been implicated in numerous developmental processes by regulating gene expression. However, their specific roles in controlling heart valve development are largely unexplored. To investigate the role of HDACs in vertebrate heart valve formation, we treated zebrafish embryos with trichostatin A (TSA), an inhibitor of class I and II HDACs, from 36 to 48 h post-fertilization (hpf) during which heart looping and valve formation occur. Following TSA treatment, abnormal linear heart tube development was observed. In these embryos, expression of AVC myocardial bmp4 and AVC endocardial notch1b genes was markedly reduced with subsequent failure of EMT in the AVC endocardial cells. However, LiCl-mediated activation of Wnt/β-catenin signaling was able to rescue defective heart tube formation, bmp4 and notch1b expression, and EMT in the AVC region. Taken together, our results demonstrated that HDAC activity plays a pivotal role in vertebrate heart tube formation by activating Wnt/β-catenin signaling which induces bmp4 expression in AVC myocardial cells.  相似文献   

18.
Early in development, the heart is a single muscle-wrapped tube without formed valves. Yet survival of the embryo depends on the ability of this tube to pump blood at steadily increasing rates and pressures. Developmental biologists historically have speculated that the heart tube pumps via a peristaltic mechanism, with a wave of contraction propagating from the inflow to the outflow end. Physiological measurements, however, have shown that the flow becomes pulsatile in character quite early in development, before the valves form. Here, we use a computational model for flow though the embryonic heart to explore the pumping mechanism. Results from the model show that endocardial cushions, which are valve primordia arising near the ends of the tube, induce a transition from peristaltic to pulsatile flow. Comparison of numerical results with published experimental data shows reasonably good agreement for various pressure and flow parameters. This study illustrates the interrelationship between form and function in the early embryonic heart.  相似文献   

19.
Cardiac looping is a vital morphogenetic process that transforms the initially straight heart tube into a curved tube normally directed toward the right side of the embryo. While recent work has brought major advances in our understanding of the genetic and molecular pathways involved in looping, the biophysical mechanisms that drive this process have remained poorly understood. This paper examines the role of biomechanical forces in cardiac rotation during the initial stages of looping, when the heart bends and rotates into a c-shaped tube (c-looping). Embryonic chick hearts were subjected to mechanical and chemical perturbations, and tissue stress and strain were studied using dissection and fluorescent labeling, respectively. The results suggest that (1) the heart contains little or no intrinsic ability to rotate, as external forces exerted by the splanchnopleure (SPL) and the omphalomesenteric veins (OVs) drive rotation; (2) unbalanced forces in the omphalomesenteric veins play a role in left-right looping directionality; and (3) in addition to ventral bending and rightward rotation, the heart tube also bends slightly toward the right. The results of this study may help investigators searching for the link between gene expression and the mechanical processes that drive looping.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号