首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Ephemeroptera showed the greatest diversity and Diptera (due mainly to Chaoboridae) the greatest absolute abundance among the macroinvertebrate taxa collected in and near three backwater areas of the Upper Mississippi River from 24 April to 24 August 1983. Of the 32 taxa identified, all were insect larvae, pupae, or adults except for one amphipod and one copepod. Three peaks in total abundance were observed — a major one in late July and August and smaller ones in May and June. These peaks corresponded to periods of high temperatures and low flows. When the macroinvertebrates were divided into groups, depending on whether they were found predominantly in the backwater areas, in the main channel, or in a combination of the two, total densities were greater in the backwater areas than in either of the main-channel habitats. In the two main-channel habitats, densities were slightly greater downstream than upstream from the confluences of the backwaters with the main channel, possibly indicating that macroinvertebrates were drifting out of the backwater areas or that nutrients and zooplankton were drifting out of the backwater areas, increasing productivity in downstream areas.  相似文献   

2.
Fish in the Kanawha River were collected with a 0.5-m plankton net in main-channel borders and in open areas of backwaters and with a 1-m2 enclosed dropbox in shallow backwater habitats. Larval emerald shiners, Notropis atherinoides , were twice as dense, and gizzard shad, Dorosoma cepedianum , 2.5 times as dense in main-channel borders as in backwaters; larval Lepomis spp. were 20 times as dense in backwaters as in main-channel borders. Smaller Lepomis larvae used open-water backwater areas primarily; larger larvae migrated to vegetated backwater habitats later in the summer. Backwaters appear crucial for the maintenance of nest-building fish species in temperate rivers, just as floodplains are necessary for the maintenance of high species diversity in tropical rivers.  相似文献   

3.
1. Studies of mesic temperate and tropical rivers suggest an important role for floodplain habitats as nursery areas for larval and juvenile fishes. In arid‐land rivers the extent and duration of flooding is diminished and habitats and resources used by larval fishes are poorly known. Our study documented habitat and resource use of larval fishes in the Rio Grande, New Mexico, an arid‐land river. 2. Spatial and temporal distribution of larval and juvenile fishes and their inferred microhabitat preferences were studied during spring, summer and autumn, 2003. Stable carbon (13C : 12C) and nitrogen (15N : 14N) isotope ratios were measured to identify nutrient sources and characterise trophic positions of young‐of‐year fishes in this system. 3. Some fishes recruited during high flows (in spring), whereas others recruited during low‐flow periods in late summer. Regardless of the timing of reproduction, microhabitats with lower current velocity and higher temperature appeared to serve as vital nursery grounds for Rio Grande fishes. Ephemeral backwaters and disconnected side channels held the highest abundance and diversity of larvae and juveniles. 4. Stable isotope analyses revealed that fish larvae obtained carbon predominately from algal production in early summer, but used organic carbon derived from emergent macrophytes as river discharge decreased in mid‐summer. This shift may have been facilitated by microinvertebrate prey that grazed down edible algae and then switched to macrophytes in mid‐summer. Nitrogen isotope ratios did not differ among species or early life stages, suggesting that larval and juvenile fishes use similar food resources, especially when restricted to isolated pools in summer.  相似文献   

4.
Snags are important to fish communities in small rivers and streams, but their importance to fishes in large rivers has not been investigated. This study examined snag use by fishes during autumn in backwater and channel border habitats in the upper Mississippi River, and compared these to fish communities in reference sites without snags. Species assemblages differed significantly between backwater and channel border habitats, and between snag and reference sites within the channel border, likely responding to differences in substrate, depth, and current velocity. In both habitats, average fish biomass and abundance were higher (2 to 50 ×) at snag sites than at reference sites, but these differences were significant only for channel border biomass. Fish taxa richness differed between backwater and channel border habitats, but not between snag and reference sites. Most large piscivorous fishes (e.g., Micropterus spp., Stizostedion spp.), several insectivorous fishes (Lepomis macrochirus, Ambloplites rupestris, Minytrema melanops), and a few prey fishes (L. macrochirus, Notropis atherinoides) were significantly more abundant at snag sites than at reference sites, suggesting active selection of snags for foraging or protection. Snag quality, as assessed by a snag rating index, had a direct effect on attracting fish communities with greater biomass, especially within the channel border habitat. These results indicate that snags are important habitat for fish communities in both backwaters and channel border habitats of the upper Mississippi River.  相似文献   

5.
Effective management of the fishery resources of the Upper Mississippi River and successful mitigation of the loss of critical habitat depend in part on an understanding of the reproductive and early life history requirements of the affected fishes. However, little is known about the use of nursery areas by fishes in the river. Of the nearly 130 species identified in the adult ichthyofauna, only a few are represented proportionally in the available data on early life stages because study designs have not included consideration of the early stages, collection gears have not adequately sampled the young, and eggs and larvae of some species are difficult to sample by conventional approaches. For the species collected, information is available on seasonal variations in total densities, composition, and catch among different habitat types. However, the data are most accurate for species with buoyant early life stages, such as freshwater drum (Aplodinotus grunniens) and gizzard shad (Dorosoma cepedianum). Eggs and larvae of freshwater drum dominate collections made in the main channel, whereas other larval fishes are usually most abundant in backwater habitats. The species found there usually deposit eggs on the substrate or on vegetation. Habitat preferences (as indicated by relative abundance) often shift as development proceeds and physical and behavioral changes occur in the larvae. Only limited information is available on the distribution of larvae within habitats, but it is clear that variations within habitats are significant.  相似文献   

6.
The ontogenetic patterns of habitat use by a community of fishes in the main channel of the Broken River, an Australian lowland river, was investigated. Stratified sampling was conducted fortnightly across six habitat types throughout the spring‐summer period within the main channel. As predicted by the 'low flow recruitment hypothesis', backwaters and still littoral habitats were important nursery habitats for most species. These habitats were found to be used by some species throughout all stages of their life cycle, while other species showed clear ontogenetic shifts in habitat preference. Only one species, Murray cod Maccullochella peelii peelii , was never found in backwaters. This study confirms the significance of main channel habitats in the rearing of larvae of some riverine fish species, and emphasizes the importance of considering the habitat requirements of all stages of a fish's life cycle in the management and restoration of rivers and streams.  相似文献   

7.
1. Persistence of zebra mussel populations in river systems probably depends upon the presence of upriver sites capable of hosting self‐recruiting adult populations that act as sources of larvae. In this paper we examine the importance of Lake Pepin, a natural riverine lake in the Upper Mississippi River, as an upriver source of larvae to the downstream populations of zebra mussels. 2. Field studies and modelling suggest that Lake Pepin plays a major role in maintaining zebra mussel populations in the Upper Mississippi River. Long water residence times in Lake Pepin allow for self‐recruitment under the right hydraulic conditions. Larval abundance was low to absent upstream of the lake but increased dramatically downriver in all 3 years of the study. Travel time estimates in the Upper Mississippi River show that newly fertilised larvae drifting out of Lake Pepin can contribute substantially to the major downstream peak in larval abundance. In contrast, backwater and other off‐channel sites are unlikely to drive main‐channel abundance patterns. Larval abundances in off‐channel sites were less than or equal to those in the main channel. 3. A key factor in assessing the importance of Lake Pepin as a source population was the abundance of early stage, unshelled larvae. Studies that consider only abundances of older shelled stages (visible by cross polarised lighting) may yield misleading results. Results of this study suggest that efforts to control zebra mussels in the Upper Mississippi River should focus on controlling adult populations within Lake Pepin and reducing or eliminating larvae exiting the lake.  相似文献   

8.
In the last 150 years, the Lower Mississippi River (LMR) floodplain was extensively reduced in area with conversion of once regularly inundated floodplain wetlands to dry land. Yet, between the present levees, there remain substantial remnants of the historical floodplain, including various types of permanent backwater habitats. We hypothesized that degree and timing of hydrologic connection with the river main channel drives variation in physical and chemical properties, and phytoplankton community dynamics, in backwaters. Over 23 months, measurements were made in several sites varying in connection with the main channel. At high stages, the channel and backwaters converged in having elevated turbidity, suspended solids and dissolved nutrient concentrations, reduced algal biomass and production, a seston C:N ratio indicating predominantly allochthonous organic matter sources, and a diatom-dominated community. When connection was reduced, backwaters declined in suspended sediments and nutrients, surged in production and biomass, had a seston C:N ratio reflecting autochthonous production, and switched to a community dominated by cryptomonad algae. With prolonged isolation, biomass-specific production became nitrogen limited and declined. By a conceptual model, we illustrate the seasonally variable role of permanent floodplain backwaters as major sources of algal organic matter, and potentially for nutrient sequestration, within the Lower Mississippi system.  相似文献   

9.
The razorback sucker (Xyrauchen texanus) is disappearing throughout its native range in the Colorado River basin of western North America. The largest remaining wild population in Lake Mohave, Arizona-Nevada, has shown no recruitment since the 1950s. Although annual spawning is successful and larvae are seasonally abundant, no juveniles have been collected in recent decades. To evaluate the potential role of food availability in determining fate of larvae, fish and zooplankton samples were taken in 1985 from the reservoir and an adjacent, isolated backwater in which larvae were naturally produced. Food availability and primary dietary constituents were similar in both habitats. Reservoir larvae selectedBosmina spp. (Cladocera) and apparently avoided Copepoda, while larvae from the backwater selectedBosmina, but avoided Rotifera. Larvae from both places showed evidence of selection for certain sizes of zooplankters, but preferred sizes differed between habitats. These differences were neither attributable to larval size nor zooplankton community structure. Nutritional factors such as type, number, or size of available foods do not explain disappearance of larval razorback suckers from Lake Mohave, since larvae survive to far greater ages and size in the backwater. Predation by introduced fishes appears a significant cause of larval mortality.  相似文献   

10.
1. Riverscapes consist of the main channel and lateral slackwater habitats along a gradient of hydrological connectivity from maximum connection in main channel habitats to minimum connection in backwaters. Spatiotemporal differences in water currents along this gradient produce dynamic habitat conditions that influence species diversity, population densities and trophic interactions of fishes. 2. We examined the importance of lateral connectivity gradients for food web dynamics in the Upper Mississippi River during spring (high flow, moderately low temperatures) and summer (low flow, higher temperatures). We used literature information and gut contents analyses to determine feeding guilds and stable isotope analysis to estimate mean trophic position of local fish assemblages. During June and August 2006, we collected over 1000 tissue samples from four habitats (main channel, secondary channels, tertiary channels and backwaters) distributed within four hydrologic connectivity gradients. 3. Mean trophic position differed among feeding guilds and seasons, with highest values in spring. Mean trophic position of fish assemblages, variability in trophic position and food chain length (maximum trophic position) of the two dominant piscivore species (Micropterus salmoides and M. dolomieu) in both seasons were significantly associated with habitat along the lateral connectivity gradient. Food chain length peaked in tertiary channels in both seasons, probably due to higher species diversity of prey at these habitats. We infer that food chain length and trophic position of fish assemblages were lower in backwater habitats in the summer mainly because of the use of alternative food sources in these habitats. 4. A greater number of conspecifics exhibited significant among‐habitat variation in trophic position during the summer, indicating that low river stages can constrain fish movements in the Upper Mississippi River. 5. Results of this study should provide a better understanding of the fundamental structure of large river ecosystems and an improved basis for river rehabilitation and management through knowledge of the importance of lateral complexity in rivers.  相似文献   

11.
Coastal and estuarine ecosystems in the eastern channel and southern bight of the North Sea provide nursery habitats for juvenile fishes. We examined the age 0-group juveniles of three flatfish speciesSolea solea, Limanda limanda and Pleuronectes platessa, collected in five nursery areas with different characteristics (three sites located near small estuaries and two affected by important inputs of industrial effluents), to evaluate habitat influence on their growth and condition. We measured a biochemical index (RNA:DNA ratio), a morphometric index (Fultons K condition index), plus a recent growth index (marginal otolith increment width) on each individual (about 3months old), collected during surveys in autumn 1999. The three indices displayed few significant differences among the five nursery sites and different patterns for each species. We suggest that the investigated nursery areas provide habitats of equivalent quality for the age 0-group juvenile flatfishes in spite of different anthropogenic disturbances. On the other hand, this study focuses on the importance of using different biological indicators to assess habitat quality and environmental stressors in coastal areas.  相似文献   

12.
Larval and juvenile fishes were collected at low tide from the surface of an intertidal salt marsh on Sapelo Island, Georgia every 6 days from 25 May through 20 December 1982. Larval fishes were present in shallow puddles of tidal water on the marsh from the beginning of the sampling period until the end of October. Juveniles were present throughout the year. Fundulus heteroclitus (Linnaeus) and F. luciae (Baird) accounted for 96.3% (67.0% and 29.3%, respectively) of the 4355 fishes collected. These fishes exhibited synchronous, temporal pulses in larval abundance, suggesting that reproduction was discontinuous and controlled by the same factor(s) in both species. Larval F. heteroclitus inhabited aquatic micro-habitats near the upland edge of the intertidal marsh, but as the larvae grew to juvenile size (≈ 10 mm standard length) they moved to lower elevations near a tidal creek. Large juveniles and adults of F. heteroclitus infrequently occurred in the samples, presumably because they leave the intertidal marsh as the tide ebbs. F. luciae were rarely found in low marsh areas, but all age classes (including adults) occurred at higher elevations, supporting previous suggestions that this species prefers high marsh habitats. The vegetated, intertidal salt marsh appears to be the principal nursery habitat for both of these cyprinodontid species.  相似文献   

13.
Horizontal zonation of fish reproduction, a lotic-to-lentic succession similar to that seen with increasing stream order, was evident from the relative abundance of larval and 0 + juvenile fishes in three floodplain spawning and nursery areas (lotic, semi-lotic, lentic) of the Upper Rhône River, France. Although the lotic and lentic ecosystems provided similar estimates of standing crop (0 + juveniles), differences were apparent in the reproductive and trophic guild structure of the YOY taxocoenoses at the three sites. A new sampling approach (Random Point-Abundance Sampling and modified electrofishing) is described for early-life fish ecology. The electrofishing method employed is mobile, effective for all sizes of larvae and 0 + juveniles of most species, quantitative, and applicable to a number of freshwater situations; and the punctual data resulting from this sampling approach are comparable both spatially and temporally.  相似文献   

14.
Diel and distributional abundance patterns of free embryos and larvae of fishes in the lower Columbia River Basin were investigated. Ichthyoplankton samples were collected in 1993 during day and night in the main-channel and a backwater of the lower Columbia River, and in a tributary, the Deschutes River. Fish embryos and larvae collected in the main-channel Columbia River were primarily (85.6%) of native taxa (peamouth Mylocheilus caurinus, northern squawfish Ptychocheilus oregonensis, suckers Catostomus spp., and sculpins Cottus spp.), with two introduced species (American shad Alosa sapidissima and common carp Cyprinus carpio) comprising a smaller percentage of the catch (13.3%). Similarly, in the Deschutes River native taxa [lampreys (Petromyzontidae), minnows (Cyprinidae), and suckers Catostomus spp.] dominated collections (99.5% of the catch). In contrast, 83.5% of embryos and larvae in the Columbia River backwater were of introduced taxa [American shad, common carp, and sunfishes (Centrarchidae)]. In all locations, all dominant taxa except sculpins were collected in significantly greater proportions at night. Taxon-specific differences in proportions of embryos and larvae collected at night can in some instances be related to life history styles. In the main-channel Columbia River, northern squawfish and peamouth were strongly nocturnal and high proportions still had yolksacs, suggesting that they had recently hatched and were drifting downriver to rearing areas. In contrast, sculpin abundances were similar during day and night, and sculpins mostly had depleted yolksacs, indicating sculpins were feeding and rearing in offshore limnetic habitats. Taxon-specific diel abundance patterns and their causes must be considered when designing effective sampling programs for fish embryos and larvae.  相似文献   

15.
Habitat restoration within large rivers to enhance early life stages of fish is an emerging field. Prior to restoration, assessment of what constitutes “good” habitat is needed. We exemplify this with a study of larval Alosa sapidissima (American shad) in the Hudson River estuary in New York State, United States, which examines the quality of four main shallow water habitat types that have been reduced greatly by dredging activities. The larval stage has been identified as a sensitive period in need of mortality reduction. Habitats were examined as nursery habitat by comparing ambient conditions to known suitability indexes and by comparing relative abundance, loss rate, daily growth, and relative condition among habitats. Areas of lower velocity had greater abundances of shad ≤15.0 mm in length and shad growth was significantly higher. As shad became larger, those in areas of higher velocity had significantly higher relative condition, suggesting a shift in habitat use as larvae metamorphose into the juvenile stage. Contiguous backwater and secondary channel habitats had reduced loss rates during 2011 when there was high river discharge. No single habitat type examined in this study was found to be overall poor quality, and it is recommended that restoration sites be examined on an individual basis. More broadly, habitat diversity appears needed both for within‐year ontogeny as well as for longer‐term resiliency in the face of disturbance, such as storm‐driven high flows.  相似文献   

16.
Tropical reef corals are expanding on Japanese temperate coasts in response to rising sea surface temperatures, and many tropical fish juveniles have been observed routinely in these coral habitats. The present study explored how offshore tropical fish larvae locate coral habitat on the temperate coasts of Japan. Settlement-stage larvae were sampled between July and October 2009–2011 with light traps anchored on coral-replete and coral-free habitats (rocky habitats) at two-level distance (distance between each habitat type was 6 km and 500 m, respectively). Larval abundance was significantly higher on the coral-dominated habitat than that on the rocky habitat at both short and long distance sites, suggesting that coral habitats attract offshore tropical fish larvae. In underwater visual survey, Chaetodontidae and Pomacentridae juveniles were more abundant in coral habitats than in rocky habitats at both the sites, and a laboratory habitat choice experiment demonstrated that these larvae showed a preference for corals rather than rocks. In contrast, densities of juvenile Mullidae did not differ between the coral and rocky habitats, and the larvae did not show a substrate preference in the habitat choice experiment. These observations suggest that habitat choice at settlement possibly accounts for the differences in settlement patterns of tropical fishes between the two habitats. Taken together, our results showed that most tropical fish larvae colonize their settlement coast at a scale of ~0.5 km, and that they may locate coral habitats after reaching a reef. Moreover, the results suggest that coral habitat expansion on temperate coasts will lead to an increase in coral-associated tropical fishes and will change assemblage structures of fishes on temperate coasts.  相似文献   

17.
The use of more than a single nursery habitat type is examined for oviparous elasmobranchs using data summarized from studies conducted on the Alaska skate Bathyraja parmifera and the Aleutian skate Bathyraja aleutica in the eastern Bering Sea. The eastern Bering Sea skate species use two discrete areas as nurseries, one for egg deposition and a second for newly emergent juveniles. Egg deposition sites were located along the outer shelf and upper slope near canyons in the eastern Bering Sea. Newly emergent juveniles were found along the outer and middle shelf for B. parmifera and deep‐slope for B. aleutica, suggesting that habitat used by newly emergent juvenile skates is distinct from habitat used for egg deposition and embryo development. In reviewing many studies on oviparous elasmobranchs, similar patterns emerge of habitat use during their early life history. To distinguish these distinct habitats, appropriate terminology is proposed. Egg case nursery is suggested for areas of egg deposition and juvenile nursery is suggested for areas where juveniles aggregate after emergence. Criteria to describe each habitat type are outlined.  相似文献   

18.
Recruitment in marine fishes is regulated largely by the demographic changes that occur during the early life stages; therefore, a thorough understanding of early life stages is essential for predicting recruitment variability in fishes. Japanese sea bass (JSB), Lateolabrax japonicus, is a coastal marine fish distributed in East Asian coastal waters, and is regarded as highly important for commercial and recreational fisheries, for marine and brackish water aquaculture as well as for stock enhancement. JSB is a typical estuarine dependent temperate fish, which spawns in shelf areas and coastal embayments and the larvae and juveniles are dispersed and transported into shallow nearshore habitats and estuaries where they spend the early life. In this paper, we provide insight into the early life history and ecology of JSB through a revision of the available information and using the data we obtained from a relatively long-term research. We review and discuss the distribution and habitat use, food and feeding, age and growth, mortality and recruitment of larval and juvenile JSB in coastal waters around Japan. We extend our discussions in all available dimensions: habitat-specific, ontogenetic, and spatio-temporal, and highlight the importance of nursery habitats. We also discuss the implications of early life history for recruitment of JSB as well as the possible effects of climate change. At the end, we point out potential areas for future research.  相似文献   

19.
The importance of the surf zone as a nursery ground for larval and juvenile fishes has been widely recognized, however the zone has yet to be studied in Mauritius. Recently, the coastal area of the island has been increasingly affected by human activities, especially by tourism. We collected fish samples with a hand pulled seine net during the period of August 2001 to March 2003 to clarify the fish fauna and the dynamics of fishes in the surf zone. Two sampling sites adjacent to river mouth areas and one sampling site adjacent to a mangrove area were selected for comparison of fish fauna in relation to environmental conditions. A total of 9,429 fish larvae and juveniles, representing at least 112 species from 48 families were collected. The abundant species were hardyhead silverside, Atherinomorus lacunosus, bluespot mullet, Valamugil seheli, and Ambassis spp., each contributing 16.2, 12.4, and 11.8% of the total number of individuals, respectively. Estuarine species dominated in the surf zone adjacent to the river mouth areas. Species composition and diversity changed seasonally. The number of fish increased during the rainy season. Species diversity increased at the turn of the seasons from the dry season to the rainy season. We conclude that species composition in each site was affected by environmental factors, such as the scale of the flux from the rivers, which is related to the precipitation. The results indicated that freshwater from the river is a trigger to aggregate larvae and juveniles in the surf zone.  相似文献   

20.
To examine the importance of the upper estuarine areas of Ariake Bay as a nursery ground for fish, assemblages of larvae and juveniles were compared among various aquatic habitats. The upper estuaries of the bay (the Rokkaku and Hayatsue estuaries) are brackish, highly turbid waters with high tidal velocities, and differ substantially from the Isahaya area, which has been separated from the bay by a man-made dike, to the middle estuary (the Kikuchi estuary). Abundances of larvae and juveniles were higher in the estuaries than in the open bay and Isahaya areas. Abundant species in the upper estuaries were similar to each other, but differed from those of the middle estuary. This was primarily due to larvae and juveniles of fishes that occurred almost entirely in the upper estuaries, such as Acanthogobius hasta, Boleophthalmus pectinirostris, Coilia nasus, Cynoglossus abbreviatus, Nibea albiflora, Odontamblyopus lacepedii, Trachidermus fasciatus and Tridentiger barbatus. These results suggest that the upper estuaries play an important role as nursery grounds for fishes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号