首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Phosphatidylinositol kinase was solubilized and purified from porcine liver microsomes to apparent homogeneity. The purification procedure includes: solubilization of microsomes by 2% Triton X-100, ammonium sulfate precipitation (20-35% saturation), Reactive blue agarose chromatography, DEAE-Sephacel chromatography and two consecutive hydroxyapatite chromatographies. A total of 4900-fold purification with 8% recovery of enzyme activity was achieved. The molecular weight of the enzyme as estimated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis was 55000. The enzyme is stimulated in a decreasing order by Mg2+, Fe2+, Mn2+, Fe3+ and Co2+. Ca2+ inhibited Mg2+-stimulated activity with an I50 of 0.4 mM. Apparent Km values for phosphatidylinositol and ATP are 120 and 60 microM, respectively. The enzyme is inhibited by adenosine (I50 = 70 microM), ADP (I50 = 120 microM) and quercetin (I50 = 100 microM). The enzyme is also sensitive to sulfhydryl inhibitors. Using the purified enzyme as an immunogen, we have successfully prepared antibodies for phosphatidylinositol kinase in rabbits. The antibodies appear to recognize an antigen of Mr 55000 on SDS-polyacrylamide gel electrophoresis from various porcine tissues in Western blot analysis.  相似文献   

2.
The main kinetic parameters for purified phosphorylase kinase from chicken skeletal muscle were determined at pH 8.2: Vm = 18 micromol/min/mg; apparent Km values for ATP and phosphorylase b from rabbit muscle were 0.20 and 0.02 mM, respectively. The activity ratio at pH 6.8/8.2 was 0.1-0.4 for different preparations of phosphorylase kinase. Similar to the rabbit enzyme, chicken phosphorylase kinase had an absolute requirement for Ca2+ as demonstrated by complete inhibition in the presence of EGTA. Half-maximal activation occurred at [Ca2+] = 0.4 microM at pH 7.0. In the presence of Ca2+, the chicken enzyme from white and red muscles was activated 2-4-fold by saturating concentrations of calmodulin and troponin C. The C0.5 value for calmodulin and troponin C at pH 6.8 was 2 and 100 nM, respectively. Similar to rabbit phosphorylase kinase, the chicken enzyme was stimulated about 3-6-fold by glycogen at pH 6.8 and 8.2 with half-maximal stimulation occurring at about 0.15% glycogen. Protamine caused 60% inhibition of chicken phosphorylase kinase at 0.8 mg/ml. ADP (3 mM) at 0.05 mM ATP caused 85% inhibition with Ki = 0.2 mM. Unlike rabbit phosphorylase kinase, no phosphorylation of the chicken enzyme occurred in the presence of the catalytic subunit of cAMP-dependent protein kinase. Incubation with trypsin caused 2-fold activation of the chicken enzyme.  相似文献   

3.
Electrophoretically homogeneous phosphoglucomutase (PGM) with specific activity of 3.6 units/mg protein was isolated from pea (Pisum sativum L.) chloroplasts. The molecular mass of this PGM determined by gel-filtration is 125 +/- 4 kD. According to SDS-PAGE, the molecular mass of subunits is 65 +/- 3 kD. The Km for glucose-1-phosphate is 18.0 +/- 0.5 microM, and for glucose-1, 6-diphosphate it is 33 +/- 0.7 microM. At glucose-1-phosphate and glucose-1,6-diphosphate concentrations above 0.5 and 0.2 mM, respectively, substrate inhibition is observed. The enzyme has optimum activity at pH 7.9 and 35 degrees C. Mg2+ activates the PGM. Mn2+ activates the enzyme at concentrations below 0.2 mM, while higher concentrations have an inhibitory effect. The activity of the PGM is affected by 6-phosphogluconate, fructose-6-phosphate, NAD+, ATP, ADP, citrate, and isocitrate.  相似文献   

4.
The phosphorylation in vivo and in vitro of the arginine-ornithine and the lysine-arginine-ornithine (LAO) periplasmic transport proteins of Escherichia coli K-12 was previously reported (Celis, R. T. F. (1984) Eur. J. Biochem. 145, 403-411). The phosphorylative reaction required ATP (as a direct energy donor), Mg2+, and a kinase that can be released by osmotic shock treatment of the cells. The enzyme was purified to electrophoretic homogeneity. The enzyme exhibited an ATPase activity and a kinase activity. Polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate gave an apparent molecular weight of 43,000 for the enzyme. The native protein showed the same molecular weight, suggesting that the protein is a monomer. The protein showed an apparent isoelectric point of 4.8 on isoelectric focusing. The two enzymatic reactions required a divalent cation and the apparent Km value for Mg2+ for the kinase activity was 0.5 mM. Mn2+ and Co2+ served as well as Mg2+, whereas Zn2+ and Ca2+ did not support activity. The ATPase activity of the enzyme yielded an apparent Km value for ATP of 50 microM. A similar value, Km of 100 microM, was calculated for the kinase activity with different concentrations of ATP. The enzyme showed a pH optimum of 7.3.  相似文献   

5.
Three distinct enzymes hydrolyzing either ApppA or AppppA, or both, were separated and purified from yellow lupin seed extracts. Two of the enzymes were purified to homogeneity. These enzymes differ greatly in their catalytic and physical properties. One hydrolase, with a native molecular weight of 41,000, exhibits broad pH (from 5-8) optimum for activity, requires Mg2+ for activity, is inhibited by zinc ions (I0.5 = 25 microM) and hydrolyses ApppA (V = 1), ApppC (V = 0.38), ApppG (V = 0.2), and ribose(5')pppA (V = 0.2). The enzyme exhibits much lower activity with AppppA (V = 0.1), and ApppppA, AppppppA, ppppA, and ATP are hydrolyzed 25- to 100-fold slower then ApppA. ADP was always one of the products of the reactions catalyzed by the enzyme. AppA, NAD, NADP, FAD, cAMP, and p-nitrophenyl-thymidine 5'-phosphate were not hydrolyzed by the enzyme. The enzyme is diadenosine 5',5"'-P1, P3-triphosphatase. The second hydrolase, composed of one polypeptide chain of a molecular weight 18,000-18,500, exhibits optimal activity in the pH range from 7.5-9, requires Mg2+ for activity, is inhibited by calcium ions (I0.5 for calcium depends on the concentration of Mg2+ and is 35-180 microM in the presence of 0.5-10 mM Mg2+, respectively), and hydrolyzes AppppA (V = 1, Km = 1 microM), ApppppA (V = 0.42, Km = 1.8 microM), AppppppA (V = 0.34), AppppU (V = 0.73), AppppC (V = 0.67), AppppG (V = 0.27), and ppppA. ATP was always one of the products of the reactions catalyzed by the enzyme. Dinucleoside di- and triphosphates, ATP, cAMP, and p-nitrophenylthymidine 5'-phosphate were not hydrolyzed by the enzyme. This enzyme is diadenosine 5',5"'-P1,P4-tetraphosphatase (EC 3.6.1.17). The third hydrolase, composed of one polypeptide chain of a molecular weight of 56,000, exhibits maximal activity at pH 9-10.5, does not require Mg2+ ions for activity, is inhibited neither by divalent cations (Mg2+, Ca2+, Zn2+, Co2+, Mn2+, or Ni2+) nor by EDTA, and uses as substrates all compounds which are substrates for the diadenosine 5',5"'-P1,P3-triphosphatase and diadenosine 5',5"'-P1,P4-tetraphosphatase. In addition, the enzyme hydrolyzes p-nitrophenyl-thymidine 5'-phosphate, p-nitrophenylthymidine 3'-phosphate, bis-p-nitrophenylphosphate, ADP, AppA, NAD, NADP, and FAD, but not cAMP. With the exception of p-nitrophenylphosphate derivatives all other substrates of the enzyme yield AMP as one of the products of hydrolysis. This enzyme has a specificity similar to that of phosphodiesterases (EC 3.1.4.1) from other sources. With the lupin phosphodiesterase, ApppA (V = 1, Km = 2.2 microM) and AppppA (V = 1, Km = 2.0 microM) are better substrates than NAD (V = 0.8, Km = 9.6 microM), AppA (V = 0.4), ApppppA (V = 0.6), and AppppppA (V = 0.34).  相似文献   

6.
Purification and characterization of the beta-adrenergic receptor kinase   总被引:12,自引:0,他引:12  
The beta-adrenergic receptor kinase (beta-ARK) is a recently discovered enzyme which specifically phosphorylates the agonist-occupied form of the beta-adrenergic receptor (beta-AR) as well as the light-bleached form of rhodopsin. beta-ARK is present in a wide variety of mammalian tissues. The kinase can be purified from bovine cerebral cortex to greater than 90% homogeneity by sequential chromatography on Ultrogel AcA34, DEAE-Sephacel, CM-Fractogel, and hydroxylapatite. This results in an approximately 20,000-fold purification with an overall recovery of 12%. The purified kinase has an Mr approximately 80,000 on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Several findings indicate that this peptide contains the beta-ARK activity. First, on hydroxylapatite chromatography the enzyme activity coelutes with the Mr approximately 80,000 protein as revealed by Coomassie-Blue staining. Second, under phosphorylating conditions the Mr approximately 80,000 protein is phosphorylated. Finally, the Mr approximately 80,000 protein specifically interacts with reconstituted agonist-occupied beta-AR. Kinetic parameters of the enzyme for beta-AR are Km = 0.25 microM and Vmax = 78 nmol/min/mg whereas for rhodopsin the values are Km = 6 microM and Vmax = 72 nmol/min/mg. The Km value of the enzyme for ATP is approximately 35 microM using either beta-AR or rhodopsin as substrate. Receptor phosphorylation by beta-ARK is effectively inhibited by Zn2+, digitonin and a variety of salts. The availability of purified beta-ARK should greatly facilitate studies of its role in receptor desensitization.  相似文献   

7.
The enzymes responsible for the phosphorylation of deoxyadenosine and nucleoside analogs are important in the pathogenesis of adenosine deaminase deficiency and in the activation of specific anticancer and antiviral drugs. We examined the role of adenosine kinase in catalyzing these reactions using an enzyme purified 4000-fold (2.1 mumol/min/mg) from human placenta. The Km values of deoxyadenosine and ATP are 135 and 4 microM, respectively. Potassium and magnesium are absolute requirements for deoxyadenosine phosphorylation, and 150 mM potassium and 5 mM MgCl2 are critical for linear kinetics. With only 0.4 mM MgCl2 in excess of ATP levels, the Km for deoxyadenosine is increased 10-fold. ADP is a competitive inhibitor with a Ki of 13 microM with variable MgATP2-, while it is a mixed inhibitor with a Ki and Ki' of 600 and 92 microM, respectively, when deoxyadenosine is variable. AMP is a mixed inhibitor with Ki and Ki' of 177 and 15 microM, respectively, with variable deoxyadenosine; it is a non-competitive inhibitor with a Ki of 17 microM and Ki' of 27 microM with variable ATP. Adenosine kinase phosphorylates adenine arabinoside with an apparent Km of 1 mM using deoxyadenosine kinase assay conditions. The Km values for 6-methylmercaptopurine riboside and 5-iodotubercidin, substrates for adenosine kinase, are estimated to be 4.5 microM and 2.6 nM, respectively. Other nucleoside analogs are potent inhibitors of deoxyadenosine phosphorylation, but their status as substrates remains unknown. These data indicate that deoxyadenosine phosphorylation by adenosine kinase is primarily regulated by its Km and the concentrations of Mg2+, ADP, and AMP. The high Km values for phosphorylation of deoxyadenosine and adenine arabinoside suggest that adenosine kinase may be less likely to phosphorylate these nucleosides in vivo than other enzymes with lower Km values. Adenosine kinase appears to be important for adenosine analog phosphorylation where the Michaelis constant is in the low micromolar range.  相似文献   

8.
A kinetic analysis of the tyrosine-specific protein kinase of pp60c-src from the C1300 mouse neuroblastoma cell line Neuro-2A and pp60c-src expressed in fibroblasts was carried out to determine the nature of the increased specific activity of the neuroblastoma enzyme. In immune-complex kinase assays with ATP-Mn2+ and the tyrosine-containing peptide angiotensin I as phosphoacceptor substrate, pp60c-src from the neuroblastoma cell line was characterized by a maximum velocity (Vmax.) that was 7-15-fold greater than the Vmax. of pp60c-src from fibroblasts. The neuroblastoma enzyme exhibited Km values for ATP (16 +/- 3 microM) and angiotensin I (6.8 +/- 2.6 mM) that were similar to Km values for ATP (25 +/- 3 microM) and angiotensin I (6.5 +/- 1.7 mM) of pp60c-src from fibroblasts. pp60v-src expressed in Rous-sarcoma-virus-transformed cells exhibited an ATP Km value (25 +/- 4 microM) and an angiotensin I Km value (6.6 +/- 0.5 mM) that approximated the values determined for pp60c-src in neuroblastoma cells and fibroblasts. These results indicate that the pp60c-src kinase from neuroblastoma cells has a higher turnover number than pp60c-src kinase from fibroblasts, and that the neural form of the enzyme would be expected to exhibit increased catalytic activity at the saturating concentrations of ATP that are found intracellularly.  相似文献   

9.
Carbamate kinase has been prepared from Lactobacillus buchneri NCDO110. An approximately 91-fold increase in the specific activity of the enzyme was achieved. The purified extract exhibited a single band following polyacrylamide gel electrophoresis. The apparent molecular weight as determined by gel electrophoresis was about 97,000. The enzyme is stable for 2 weeks at -20 degrees C. Maximum enzymatic activity was observed at 30 degrees C and pH 5.4 in 0.1 M acetate buffer. L. buchneri carbamate kinase requires Mg2+ or Mn2+; its activity is higher with Mn2+. The activation energy of the reaction was 4078 cal mol-1 for the reaction with Mn2+ and 3059 cal mol-1 for the reaction with Mg2+. From a Dixon plot a pK value of 4.8 was calculated. The apparent Km values for ADP with Mg2+ or Mn2+ were 0.71 X 10(-3) and 1.17 X 10(-3) M, respectively, and the apparent Km values for carbamyl phosphate with Mg2+ or Mn2+ were 1.63 X 10(-3) and 1.53 X 10(-3) M, respectively. ATP and CTP acted as inhibitors of this reaction and the following values were obtained: Ki (ATP)Mg2+ = 9.4 mM, Ki (ATP)Mn2+ = 6.2 mM, and Ki (CTP)Mg2+ = 4.4 mM.  相似文献   

10.
Calmodulin-dependent NAD kinase of human neutrophils   总被引:1,自引:0,他引:1  
NAD kinase from human neutrophils has been partially purified by sequential application of Red Agarose, ion-exchange, and gel-filtration chromatography. The enzyme has a broad pH optimum, 7.0-9.5, is strictly dependent upon the presence of Mg2+, and in the absence of calcium exhibits Km values of 0.6 and 0.9 mM for NAD and ATP, respectively. NAD kinase activity is extremely sensitive to free calcium concentration, with half-maximal activity observed at free calcium concentrations of approximately 0.4 microM. In cellular extracts calcium-dependent activation of NAD kinase increases the maximum velocity of the reaction from 2- to 5-fold while not affecting Km values for NAD and ATP. The activity of the partially purified NAD kinase is stimulated 3.5-fold by the addition of calmodulin in the presence of calcium. This stimulation is inhibited by the addition of 20 microM trifluoperazine to the incubation. These data are interpreted as implicating calmodulin in NAD kinase regulation. The total concentration of NADP + NADPH in the human neutrophil used increased 2.2-fold in response to activation by phorbol myristic acetate. Finally, neutrophil NAD kinase has a Mr, based upon gel filtration, of 169,000.  相似文献   

11.
An enzyme which catalyzes the synthesis of thiamin triphosphate from thiamin diphosphate (TDP), thiamindiphosphate kinase (ATP:thiamin diphosphate phosphotransferase) [EC 2.7.4.15], was detected in animal tissues. The enzyme was partially purified (150-fold) from the cytosol fraction of guinea pig brain. The enzyme reaction required free (not protein-bound) TDP, ATP, Mg2+, and a cofactor, which is a low molecular weight and heat-stable compound. The enzyme activity was optimal at pH 11 and at 25 degrees C. A stoichiometric transfer of 32P from [gamma-32P]ATP to TDP was demonstrated. Km values for TDP and ATP were calculated to be 1.1 mM and 10 microM, respectively, and Vmax was 868 nmol/mg of protein/hr. The enzyme was found solely in the cytosol fraction of guinea pig brain and was also detectable in the skeletal muscle and heart. These results provide strong evidence for the existence of TDP kinase in animal tissues.  相似文献   

12.
Phosphoglycolate (P-glycolate) phosphatase was purified 223-fold from spinach leaves by (NH4)2SO4 fractionation, DEAE-cellulose chromatography, and Sephadex G-200 chromatography. The partially purified enzyme had a broad pH optimum between 5.6 and 8.0 and was specific for the hydrolysis of P-glycolate with a Km (P-glycolate) of 26 microM. The enzyme was activated by divalent cations including Mg2+, Co2+, Mn2+, and Zn2+, and by anions including Cl-, Br-, NO-3, and HCOO-. Neither anions nor divalent cations activated the enzyme without the other. The P-glycolate phosphatase activities from tobacco leaves or the green algae, Chlamydomonas reinhardtii, also required Mg2+ and were activated by chloride. In addition, the enzyme was allosterically inhibited by ribose 5-phosphate. The activation of P-glycolate phosphatase by both anions and divalent cations and the inhibition by ribose 5-phosphate may be involved in the in vivo regulation of P-glycolate phosphatase activity.  相似文献   

13.
Ca2+-activated and phospholipid-dependent protein kinase (protein kinase C) isolated from rat brain cytosol undergoes autophosphorylation in the presence of Mg2+, ATP, Ca2+, phosphatidylserine, and diolein. Approximately 2-2.5 mol of phosphate were incorporated per mol of the kinase. After sodium dodecyl sulfate-polyacrylamide gel electrophoresis and autoradiography, the phosphorylated kinase showed a single protein band of Mr = 82,000 compared to the Mr = 80,000 of the nonphosphorylated enzyme. Analysis of the 32P-labeled tryptic peptides derived from the autophosphorylated kinase by peptide mapping revealed that multiple sites were phosphorylated. Both serine and threonine residues were found to be labeled with 32P. Limited proteolysis of the autophosphorylated kinase with trypsin resulted in the conversion of the kinase into a phospholipid- and Ca2+-independent form. Two major 32P-labeled fragments, Mr = 48,000 and 38,000, were formed as a result of proteolysis, suggesting that the catalytic domain and possibly the Ca2+- and phospholipid-binding region were both phosphorylated. Protein kinase C autophosphorylation has a Km for ATP (1.5 microM) about 10-fold lower than that for phosphorylation of exogenous substrates. The kinetically preferred autophosphorylation appears to be an intramolecular reaction. The autophosphorylated protein kinase C, unlike the protease-degraded enzyme, still depends on Ca2+ and phospholipid for maximal activity. However, the autophosphorylated form of the kinase has a lower Ka for Ca2+ and a higher affinity for the binding of [3H]phorbol-12, 13-dibutyrate. These findings suggest that autophosphorylation of protein kinase C may be important in the regulation of the enzymic activity subsequent to signal transduction.  相似文献   

14.
Using the activated cGMP-dependent protein kinase in the presence of the phosphorylatable peptide [[Ala34]histone H2B-(29-35)], we found that lin-benzoadenosine 5'-diphosphate (lin-benzo-ADP) was a competitive inhibitor of the enzyme with respect to ATP with a Ki (22 microM) similar to the Kd (20 microM) determined by fluorescence polarization titrations. The Kd for lin-benzo-ADP determined in the absence of the phosphorylatable peptide, however, was only 12 microM. ADP bound with lower affinity (Ki = 169 microM; Kd = 114 microM). With [Ala34]histone H2B-(29-35) as phosphoryl acceptor, the Km for lin-benzo-ATP was 29 microM, and that for ATP was 32 microM. The Vmax with lin-benzo-ATP, however, was only 0.06% of that with ATP as substrate [0.00623 +/- 0.00035 vs. 11.1 +/- 0.17 mumol (min.mg)-1]. Binding of lin-benzo-ADP to the kinase was dependent upon a divalent cation. Fluorescence polarization revealed that Mg2+, Mn2+, Co2+, Ni2+, Ca2+, Sr2+, and Ba2+ supported nucleotide binding to the enzyme; Ca2+, Sr2+, and Ba2+, however, did not support any measurable phosphotransferase activity. The rank order of metal ion effectiveness in mediating phosphotransferase activity was Mg2+ greater than Ni2+ greater than Co2+ greater than Mn2+. Although these results were similar to those observed with the cAMP-dependent protein kinase [Hartl, F. T., Roskoski, R., Jr., Rosendahl, M. S., & Leonard, N. J. (1983) Biochemistry 22, 2347], major differences in the Vmax with lin-benzo-ATP as substrate and the effect of peptide substrates on nucleotide (both lin-benzo-ADP and ADP) binding were observed.  相似文献   

15.
Pyridoxal kinase has been purified 2,000-fold from pig brain. The enzyme preparation migrates as a single protein and activity band on analytical gel electrophoresis. Pyridoxal kinase, 60,000 molecular weight, catalyzes the phosphorylation of pyridoxal (Km = 2.5 x 10(-5) M) and pyridoxine (Km = 1.7 x 10(-5) M). Pyridoxamine is not a substrate of the purified kinase. Irradiation of the kinase in the presence of riboflavin leads to irreversible loss of catalytic activity. Riboflavin binds to the kinase with a KD = 5 microM as shown by fluorometric titrations. Singlet excited oxygen, generated by energy transfer from the lowest triplet of riboflavin to oxygen, acts as the oxidizing agent of approximately one histidine residue per mol of enzyme. The amino acid residues tyrosine, tryptophan, and cysteine are not photooxidized by the sensitizer bound to the enzyme. It is postulated that histidine is involved in the binding of the substrate ATP to the catalytic site of pyridoxal kinase.  相似文献   

16.
The two sulfate-activating enzymes, ATP-sulfurylase (EC 2.7.7.4) and adenosine-5'-phosphosulfate kinase (adenylylsulfate kinase, EC 2.7.1.25), were each purified about 2000-fold from crude rat chondrosarcoma homogenate. Throughout a purification protocol which included Sephacryl S-300 gel filtration, DEAE-Sephadex ion exchange, hydroxylapatite, and ATP-agarose affinity chromatography, these two activities consistently co-purified. ATP-sulfurylase and adenosine-5'-phosphosulfate kinase each showed a pH optima of 7.0-7.4 and a bimodal temperature optima of 46 and 52-54 degrees C. Both activities preferred Mg2+ as their divalent cation source over Mn2+, Co2+, or Zn2+. The apparent Km values determined for adenosine 5'-phosphosulfate in both assays was 1-5 microM; the Km for pyrophosphate in the sulfurylase reaction was 40 microM and for ATP in the kinase reaction was 5 mM. Gel electrophoresis indicated major bands at Mr = 160,000 in nondenaturing systems and 35,000-37,000 and 60,000 under dissociative conditions, whereas gel filtration of the most highly purified fractions yielded a coincident peak in the molecular weight range 260,000.  相似文献   

17.
Riboflavin kinase (E.C.2.7.1.26) was isolated from the cells of the yeast Pichia guilliermondii. The enzyme was 680-fold purified uzing ammonium sulphate fractionation, chromatography on DEAE-Sephadex A-50 and CM-Sephadex C-50 and gel-filtration through Sephadex G-75. Purified enzyme preparation was free from phosphatases and FAD-synthetase. The pH optimum was 8,7, the temperature optimum-45 degrees C. The enzyme was activated by Zn2+, Mg2+ and Co2+ ions. Km for riboflavin was 1,0x10(-5) M, for ATP -- 6,7X10(-6) M. Riboflavin kinase catalyzed the phosphorylation of riboflavin analogues with the substitution of methyl groups at positions 7 and 8. UTP, GTP, ADP and CTP, besides ATP, were phosphate donors. AMP inhibited the enzyme activity. Molecular weight of the enzyme was 28000, as estimated by gel-filtration through Sephadex G-150. Purified riboflavin kinase was stable under storage.  相似文献   

18.
ATP and GTP have been compared as substrates for (Na+ + K+)-ATPase in Na+-activated hydrolysis, Na+-activated phosphorylation, and the E2K----E1K transition. Without added K+ the optimal Na+-activated hydrolysis rates in imidazole-HCl (pH 7.2) are equal, but are reached at different Na+ concentrations: 80 mM Na+ for GTP, 300 mM Na+ for ATP. The affinities of the substrates for the enzyme are widely different: Km for ATP 0.6 microM, for GTP 147 microM. The Mg-complexed nucleotides antagonize activation as well as inhibition by Na+, depending on the affinity and concentration of the substrate. The optimal 3-s phosphorylation levels in imidazole-HCl (pH 7.0) are equally high for the two substrates (3.6 nmol/mg protein). The Km value for ATP is 0.1-0.2 microM and for GTP it ranges from 50 to 170 microM, depending on the Na+ concentration. The affinity of Na+ for the enzyme in phosphorylation is lower with the lower affinity substrate: Km (Na+) is 1.1 mM with ATP and 3.6 mM with GTP. The GTP-phosphorylated intermediate exists, like the ATP-phosphorylated intermediate, in the E2P conformation. Addition of K+ increases the optimal hydrolytic activity 30-fold for ATP (at 100 mM Na+ + 10 mM K+) and 2-fold for GTP (at 100 mM Na+ + 0.16 mM K+). K+ greatly increases the Km values for both substrates (to 430 microM for ATP and 320 microM for GTP). Above 0.16 mM K+ inhibits GTP hydrolysis. GTP does not reverse the quenching effect of K+ on the fluorescence of the 5-iodoacetamidofluorescein-labeled enzyme. ATP fully reverses this effect, which represents the transition from E1K to E2K. Hence GTP is unable to drive the E2K----E1K transition.  相似文献   

19.
Adenosine kinase (AK) is a purine salvage enzyme that catalyzes the phosphorylation of adenosine to AMP. In Mycobacterium tuberculosis, AK can also catalyze the phosphorylation of the adenosine analog 2-methyladenosine (methyl-Ado), the first step in the metabolism of this compound to an active form. Purification of AK from M. tuberculosis yielded a 35-kDa protein that existed as a dimer in its native form. Adenosine (Ado) was preferred as a substrate at least 30-fold (Km = 0.8 +/- 0.08 microM) over other natural nucleosides, and substrate inhibition was observed when Ado concentrations exceeded 5 micro M. M. tuberculosis and human AKs exhibited different affinities for methyl-Ado, with Km values of 79 and 960 microM, respectively, indicating that differences exist between the substrate binding sites of these enzymes. ATP was a good phosphate donor (Km = 1100 +/- 140 microM); however, the activity levels observed with dGTP and GTP were 4.7 and 2.5 times the levels observed with ATP, respectively. M. tuberculosis AK activity was dependent on Mg2+, and activity was stimulated by potassium, as reflected by a decrease in the Km and an increase in Vmax for both Ado and methyl-Ado. The N-terminal amino acid sequence of the purified enzyme revealed complete identity with Rv2202c, a protein currently classified as a hypothetical sugar kinase. When an AK-deficient strain of M. tuberculosis (SRICK1) was transformed with this gene, it exhibited a 5,000-fold increase in AK activity compared to extracts from the original mutants. These results verified that the protein that we identified as AK was coded for by Rv2202c. AK is not commonly found in bacteria, and to the best of our knowledge, M. tuberculosis AK is the first bacterial AK to be characterized. The enzyme shows greater sequence homology with ribokinase and fructokinase than it does with other AKs. The multiple differences that exist between M. tuberculosis and human AKs may provide the molecular basis for the development of nucleoside analog compounds with selective activity against M. tuberculosis.  相似文献   

20.
A membrane-bound undecaprenol kinase from Lactobacillus has been identified by observing the ATP-dependent phosphorylation of [14C]undercaprenol. The product of this reaction was shown to be [14C]undecaprenyl monophosphate by comparison of its chromatographic mobilities with authentic undecaprenyl monophosphate. It was shown that 32P from [gamma-32P]ATP was incorporated into undecaprenyl monophosphate. The kinase was partially solubilized by a variety of methods utilizing Triton X-100. Both the membrane-associated and solubilized enzymes required Mg2+, Triton X-100 and dimethylsulfoxide for activity. The enzyme preferentially phosphorylated the C34, C50 AND C 55 polyprenols. Geranylgeraniol (C20) and dolichol (C100), however, were utilized only 6% and 13% as well as undecaprenol, respectively. Despite the 8-fold difference in apparent V values, the apparent Km values for dolichol and undecaprenol were both 14 microM. The apparent Km for the nucleotide cosubstrate, ATP, was 2 mM. No other nucleoside triphosphate could substitute for ATP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号