首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
The hrp gene cluster of Xanthomonas spp. contains genes for the assembly and function of a type III secretion system (TTSS). The hrpF genes reside in a region between hpaB and the right end of the hrp cluster. The region of the hrpF gene of Xanthomonas oryzae pv. oryzae is bounded by two IS elements and also contains a homolog of hpaF of X. campestris pv. vesicatoria and two newly identified genes, hpa3 and hpa4. A comparison of the hrp gene clusters of different species of Xanthomonas revealed that the hrpF region is a constant yet more variable peninsula of the hrp pathogenicity island. Mutations in hpaF, hpa3, and hpa4 had no effect on virulence, whereas hrpF mutants were severely reduced in virulence on susceptible rice cultivars. The hrpF genes from X. campestris pv. vesicatoria, X. campestris pv. campestris, and X. axonopodis pv. citri each were capable of restoring virulence to the hrpF mutant of X. oryzae pv. oryzae. Correspondingly, none of the Xanthomonas pathovars with hrpF from X. oryzae pv. oryzae elicited a hypersensitive reaction in their respective hosts. Therefore, no evidence was found for hrpF as a host-specialization factor. In contrast to the loss of Bs3-dependent reactions by hrpF mutants of X. campestris pv. vesicatoria, hrpF mutants of X. oryzae pv. oryzae with either avrXa10 or avrXa7 elicited hypersensitive reactions in rice cultivars with the corresponding R genes. A double hrpFxoo-hpa1 mutant also elicited an Xa10-dependent resistance reaction. Thus, loss of hrpF, hpal, or both may reduce delivery or effectiveness of type III effectors. However, the mutations did not completely prevent the delivery of effectors from X. oryzae pv. oryzae into the host cells.  相似文献   

4.
Xanthomonas oryzae pv. oryzicola, the cause of bacterial leaf streak in rice, possesses clusters of hrp genes that determine its ability to elicit a hypersensitive response (HR) in nonhost tobacco and pathogenicity in host rice. A 27-kb region of the genome of X. oryzae pv. oryzicola (RS105) was identified and sequenced, revealing 10 hrp, 9 hrc (hrp conserved), and 8 hpa (hrp-associated) genes and 7 regulatory plant-inducible promoter boxes. While the region from hpa2 to hpaB and the hrpF operon resembled the corresponding genes of other xanthomonads, the hpaB-hrpF region incorporated an hrpE3 gene that was not present in X. oryzae pv. oryzae. We found that an hrpF mutant had lost the ability to elicit the HR in tobacco and pathogenicity in adult rice plants but still caused water-soaking symptoms in rice seedlings and that Hpa1 is an HR elicitor in nonhost tobacco whose expression is controlled by an hrp regulator, HrpX. Using an Hrp phenotype complementation test, we identified a small hrp cluster containing the hrpG and hrpX regulatory genes, which is separated from the core hrp cluster. In addition, we identified a gene, prhA (plant-regulated hrp), that played a key role in the Hrp phenotype of X. oryzae pv. oryzicola but was neither in the core hrp cluster nor in the hrp regulatory cluster. A prhA mutant failed to reduce the HR in tobacco and pathogenicity in rice but caused water-soaking symptoms in rice. This is the first report that X. oryzae pv. oryzicola possesses three separate DNA regions for HR induction in nonhost tobacco and pathogenicity in host rice, which will provide a fundamental base to understand pathogenicity determinants of X. oryzae pv. oryzicola compared with those of X. oryzae pv. oryzae.  相似文献   

5.
KdgR has been reported to negatively regulate the genes involved in degradation and metabolization of pectic acid and other extracellular enzymes in soft-rotting Erwinia spp. through direct binding to their promoters. The possible involvement of a KdgR orthologue in virulence by affecting the expression of extracellular enzymes in Xanthomonas oryzae pv. oryzae, the causal agent of rice blight disease, was examined by comparing virulence and regulation of extracellular enzymes between the wild type (WT) and a strain carrying a mutation in putative kdgR (ΔXoo0310 mutant). This putative kdgR mutant of X. oryzae pv. oryzae showed increased pathogenicity on rice without affecting the regulation of extracellular enzymes, such as amylase, cellulase, xylanase, and protease. However, the mutant carrying a mutation in an ortholog of xpsL, which encodes the functional secretion machinery for the extracellular enzymes, showed a dramatic decrease in pathogenicity on rice. Both mutants of kdgR and of xpsL orthologs showed higher expression of two major hrp regulatory genes, hrpG and hrpX, and the genes in the hrp operons when grown in hrp-inducing medium. Thus, both genes were shown to be involved in repression of hrp genes. The kdgR ortholog was thought to suppress virulence mainly by repressing the expression of hrp genes without affecting the expression of extracellular enzymes, unlike findings for the kdgR gene in soft-rotting Erwinia spp. On the other hand, xpsL was confirmed to be involved in virulence by promoting the secretion of extracellular enzymes in spite of repressing the expression of the hrp genes.  相似文献   

6.
7.
8.
We have cloned a hrp gene cluster from Xanthomonas oryzae pv. oryzae. Bacteria with mutations in the hrp region have reduced growth in rice leaves and lose the ability to elicit a hypersensitive response (HR) on the appropriate resistant cultivars of rice and the nonhost plant tomato. A 12,165-bp portion of nucleotide sequence from the presumed left end and extending through the hrpB operon was determined. The region was most similar to hrp genes from Xanthomonas campestris pv. vesicatoria and Ralstonia solanacearum. Two new hrp-associated loci, named hpa1 and hpa2, were located beyond the hrpA operon. The hpa1 gene encoded a 13-kDa glycine-rich protein with a composition similar to those of harpins and PopA. The product of hpa2 was similar to lysozyme-like proteins. Perfect PIP boxes were present in the hrpB and hpa1 operons, while a variant PIP box was located upstream of hpa2. A strain with a deletion encompassing hpa1 and hpa2 had reduced pathogenicity and elicited a weak HR on nonhost and resistant host plants. Experiments using single mutations in hpa1 and hpa2 indicated that the loss of hpa1 was the principal cause of the reduced pathogenicity of the deletion strain. A 1,519-bp insertion element was located immediately downstream of hpa2. Hybridization with hpa2 indicated that the gene was present in all of the strains of Xanthomonas examined. Hybridization experiments with hpa1 and IS1114 indicated that these sequences were detectable in all strains of X. oryzae pv. oryzae and some other Xanthomonas species.  相似文献   

9.
A regulatory protein HrpXo of Xanthomonas oryzae pv. oryzae, the causal agent of bacterial leaf blight of rice, is known to control the expression of hrp genes that encode components of a type III secretion system and of some effector protein genes. In this study, we screened novel HrpXo regulons from the genome database of X. oryzae pv. oryzae, searching for ORFs preceded by two predicted sequence motifs, a plant-inducible promoter box-like sequence and a -10 box-like sequence. Using a gus reporter system, nine of 15 ORF candidates were expressed HrpXo dependently. We also showed by base-substituted mutagenesis that both motifs are essential for the expression of the genes.  相似文献   

10.
11.
水稻条斑病细菌(Xanthomonas oryzae pv.oryzicola,Xooc)决定在非寄主植物上激发过敏反应(hypersensitive response)和在寄主水稻上具致病性(pathogenicity)的hrp基因簇是诱导表达的。为研究hrp基因的功能,利用hpa1和hrpX基因的启动子与gfp基因进行融合,构建了hrp基因诱导表达系统。绿色荧光蛋白表达揭示,Xoochrp基因在营养丰富的NB培养基上不能有效表达,在hrp诱导培养基XOM3上可有效表达。以hrpXhrpG突变体为参照,RT-PCR研究结果提示,Xooc野生型菌株hpa1基因在NB上不能有效表达,在XOM3培养基上可有效表达。相应地,hrpX突变体中hpa1基因不能被诱导表达,而在hrpG突变体中hpa1基因转录表达水平低于野生菌。研究结果还证实,水稻悬浮细胞能高效诱导Xoochrp基因表达。Xooc hrp基因诱导表达系统的建立为研究hrp基因功能、发掘T3SS效应分子以及开展Xooc致病性研究奠定了基础。  相似文献   

12.
The plant-pathogenic prokaryote Xanthomonas oryzae pv. oryzae (Xoo) causes bacterial leaf blight, one of the most destructive diseases of rice. A nonpolar mutant of the rsmA-like gene rsmA(Xoo) of the Xoo Chinese strain 13751 was constructed by homologous integration with a suicide plasmid. Virulence tests on a host plant, namely the hybrid rice cultivar Teyou 63, showed that the mutant had lost its virulence almost completely, whereas tests on a nonhost, namely castor-oil plant (Ricinus communis), showed that the mutant had also lost the ability to induce a hypersensitive response in the nonhost. In addition, the rsmA(Xoo) mutant produced significantly smaller amounts of the diffusible signal factor, extracellular endoglucanase, amylase and extracellular polysaccharide, but showed significantly higher glycogen accumulation, bacterial aggregation and cell adhesion. The expression of most hrp genes, genes encoding AvrBs3/PthA family members, rpfB, xrvA, glgA, eglXoB and XOO0175 (encoding an α-amylase) was down-regulated in the rsmA(Xoo) mutant. All phenotypes and expression levels of the tested genes in the rsmA(Xoo) mutant were restored to their levels in the wild-type by the presence of rsmA(Xoo) in trans. These results indicate that rsmA(Xoo) is essential for the virulence of Xoo.  相似文献   

13.
14.
摘要:【目的】决定水稻条斑病菌(Xanthomonas oryzae pv. oryzicola)在非寄主植物上激发过敏反应(hypersensitive response, HR)和在寄主水稻上致病性(pathogenicity)的hrp基因簇是受hrpG和hrpX基因调控的,但还不清楚hrpG和hrpX基因是否共同决定着所有hrp基因的表达。【方法】本文通过基因敲除方式获得了水稻条斑病菌的hrpG和hrpX基因的双突变体。【结果】烟草和水稻上测定结果显示,双突变体与单突变体一样,均在烟草上失去HR激发能力和丧失在水稻上的致病性;相应地,功能互补后双突变体恢复至野生表型。细菌在水稻悬浮细胞、hrp诱导培养基XOM3和营养丰富的培养基NB中生长后的RT-PCR结果显示,NB中hrp基因低水平表达,XOM3和水稻细胞能够高水平诱导hrp基因表达。无论何种生长条件,hrpG单突变体中hrcC、hrcT、hpa3和hrpE基因表达,而hpa1、hpa2、hpaB、hrcJ和hrpG基因不表达;hrpX单突变体中hpa2、hrcC、hpa3、hrpE和hrpG基因表达,而hpa1、hrcT、hpaB和hrcJ基因不表达;hrpG和hrpX双突变体中hrcC、hpa3和hrpE基因表达,而hpa1、hpa2、hpaB、hrcT、hrcJ和hrpG基因不表达。【结论】这提示,水稻条斑病菌的hrcC、hrpE和hpa3基因不受hrpG和hrpX基因单独或同时调控,而hrcT基因受HrpG调控。由此推测,水稻条斑病菌III型分泌系统关键组份的表达有可能通过另外的信号途径进行调控,这为进一步分析III型分泌途经的形成提供了线索。  相似文献   

15.
RNA-mediated gene silencing in the phytopathogenic fungus Bipolaris oryzae   总被引:1,自引:0,他引:1  
The Ascomycetous fungus Bipolaris oryzae is the causal agent of brown leaf spot disease in rice and is a model for studying photomorphogenetic responses by near-UV radiation. Targeted gene disruption (knockout) for functional analysis of photomorphogenesis-related genes in B. oryzae can be achieved by homologous recombination with low efficiency. Here, the applicability of RNA silencing (knockdown) as a tool for targeting endogenous genes in B. oryzae is reported. A polyketide synthase gene (PKS1), involved in fungal DHN melanin biosynthesis pathways, was targeted by gene silencing as a marker. The silencing vector encoding hairpin RNA of the PKS1 fragment was constructed in a two-step PCR-based cloning, and introduced into the B. oryzae genomic DNA. Silencing of the PKS1 gene resulted in albino phenotypes and reduction of PKS1 mRNA expression. These results demonstrate the applicability of targeted gene silencing as a useful reverse-genetics approach in B. oryzae.  相似文献   

16.
Xanthomonas oryzae pv. oryzae causes bacterial leaf blight, a serious disease of rice. Spontaneous mutants which are deficient for virulence and extracellular polysaccharide (Eps) production accumulate in large numbers in stationary-phase cultures of this bacterium, a phenomenon which we have called stationary-phase variation. A clone (pSD1) carrying the Eps biosynthetic gene (gum) cluster of X. oryzae pv. oryzae restored Eps production and virulence to several spv (for stationary-phase variation) mutants. Data from localized recombination analysis, Southern hybridization, PCR amplification, and sequence analysis showed that the mutations are due to insertion of either one of two novel endogenous insertion sequence (IS) elements, namely, ISXo1 and ISXo2, into gumM, the last gene of the gum gene cluster. The results of Southern analysis indicate the presence of multiple copies of both IS elements in the genome of X. oryzae pv. oryzae. These results demonstrate the role of IS elements in stationary-phase variation in X. oryzae pv. oryzae.  相似文献   

17.
18.
T. Oku    Y. Wakasaki    N. Adachi    C. I. Kado    K. Tsuchiya  T. Hibi 《Journal of Phytopathology》1998,146(4):197-200
Xanthomonas campestris pv. campestris and X. oryzae pv, oryzae contain the 1428 base pair hrpX gene whose product is involved in the regulation oi hrp genes required for pathogericity, non-host hypersensitivity and non-permissibility of compatible host defence responses. Previous Southern blot hybridization studies have suggested that hrpX is conserved in several X. campestris pathovars and X. oryzae. strains. We have confirmed and extended these findings using hrpX gene amplification by polymerase chain reaction, coupled with Southern blot hybridization analyses. Sixteen distinct pathovars of X. campestris and 12 strains of X. oryzae pv, oryzae were shown to contain homologs of hrpX which were not apparent in heterologous bacteria such as Agrobacterium tumefaciens, A. rhizogenes, Erwinia carolovora ssp. carotovora, Pseudomonas syringae pv, glycinea. P. syringae pv, labaci , and Escherichia coli. The hrpX gene is therefore highly conserved among Xanthomonas species and its gene product strongly resembles positive regulatory proteins of the AraC protein family,  相似文献   

19.
20.
Xanthomonas oryzae pv. oryzae causes bacterial leaf blight, a serious disease of rice. In the related bacterium Xanthomonas campestris pv. campestris, the rpfF gene is involved in production of a diffusible extracellular factor (DSF) that positively regulates synthesis of virulence-associated functions like extracellular polysaccharide (EPS) and extracellular enzymes. Transposon insertions in the rpfF homolog of X. oryzae pv. oryzae are deficient for virulence and production of a DSF but are proficient for EPS and extracellular enzyme production. The rpfF X. oryzae pv. oryzae mutants exhibit an unusual tetracycline susceptibility phenotype in which exogenous iron supplementation is required for phenotypic expression of a tetracycline resistance determinant that is encoded on an introduced plasmid. The rpfF X. oryzae pv. oryzae mutants also overproduce one or more siderophores and exhibit a growth deficiency under low iron conditions as well as in the presence of reducing agents that are expected to promote the conversion of Fe+3 to Fe+2. Exogenous iron supplementation promotes migration of rpfF X. oryzae pv. oryzae mutants in rice leaves. The results suggest that rpfF may be involved in controlling an iron-uptake system of X. oryzae pv. oryzae and that an inability to cope with the conditions of low iron availability in the host may be the reason for the virulence deficiency of the rpfF X. oryzae pv. oryzae mutants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号