首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Understanding the factors driving assembling structure of ecological communities remains a fundamental problem in ecology, especially when focusing on ecological and evolutionary relatedness among species rather than on their taxonomic identity. It remains critical though to separate the patterns and drivers of phylogenetic and functional structures, because traits are phylogenetically constrained, but phylogeny alone does not fully reflect trait variability among species. Using birds from the Brazilian dry forest as a study case, we employed two different approaches to decompose functional structure into its components that are shared and non‐shared with the phylogenetic structure. We investigated the spatial pattern and environmental hypotheses for these phylogenetically constrained and unconstrained aspects of functional structure, including climate‐induced physiological constraints, historical climatic stability, resource availability and habitat partitioning. We found only partial congruence between the two methods of structure decomposition. Still, we found a differential effect of factors on specific components of functional structure of bird assemblages. While climate affects phylogenetically constrained traits through endurance, habitat partitioning (especially forest cover) affects the functional structure that is independent of phylogeny. With this strategy, we were able to decompose the patterns and drivers of the functional structure of birds along a semiarid gradient and showed that the decomposition of the functional structure into its phylogenetic and non‐phylogenetic counterparts can offer a more complete portrait of the assembling rules in ecological communities. We claim for a further development and use of this sort of strategy to investigate assembling rules in ecological communities.  相似文献   

2.
3.
Periodic climatic oscillations and species dispersal during the postglacial period are two important causes of plant assemblage and distribution on the Qinghai‐Tibet Plateau (QTP). To improve our understanding of the bio‐geological histories of shrub communities on the QTP, we tested two hypotheses. First, the intensity of climatic oscillations played a filtering role during community structuring. Second, species dispersal during the postglacial period contributed to the recovery of species and phylogenetic diversity and the emergence of phylogenetic overdispersion. To test these hypotheses, we investigated and compared the shrub communities in the alpine and desert habitats of the northeastern QTP. Notably, we observed higher levels of species and phylogenetic diversity in the alpine habitat than in the desert habitat, leading to phylogenetic overdispersion in the alpine shrub communities versus phylogenetic clustering in the desert shrub communities. This phylogenetic overdispersion increased with greater climate anomalies. These results suggest that (a) although climate anomalies strongly affect shrub communities, these phenomena do not act as a filter for shrub community structuring, and (b) species dispersal increases phylogenetic diversity and overdispersion in a community. Moreover, our investigation of the phylogenetic community composition revealed a larger number of plant clades in the alpine shrub communities than in the desert shrub communities, which provided insights into plant clade‐level differences in the phylogenetic structures of alpine and desert shrub communities in the northeastern QTP.  相似文献   

4.
5.
贾鹏  杜国祯 《生命科学》2014,(2):153-157
生物多样性是生态学的核心问题。传统的多样性指数仅包含物种数和相对多度的信息,这类基于分类学的多样性指数并不能很好地帮助理解群落构建和生态系统功能。不同物种对群落构建和生态系统功能所起到的作用类型和贡献也不完全相同,且物种在生态过程中的作用和贡献往往与性状密切相关,因此功能多样性已经成为反映物种群落构建、干扰以及环境因素对群落影响的重要指标。同时,由于亲缘关系相近的物种往往具有相似的性状,系统发育多样性也可以作为功能多样性的一个替代。功能多样性和系统发育多样性各自具有优缺点,但二者均比分类多样性更能揭示群落和生态系统的构建、维持与功能。  相似文献   

6.
Ecologists are increasingly making use of molecular phylogenies, especially in the fields of community ecology and conservation. However, these phylogenies are often used without full appreciation of their underlying assumptions and uncertainties. A frequent practice in ecological studies is inferring a phylogeny with molecular data from taxa only within the community of interest. These “inferred community phylogenies” are inherently biased in their taxon sampling. Despite the importance of comprehensive sampling in constructing phylogenies, the implications of using inferred community phylogenies in ecological studies have not been examined. Here, we evaluate how taxon sampling affects the quantification and comparison of community phylogenetic diversity using both simulated and empirical data sets. We demonstrate that inferred community trees greatly underestimate phylogenetic diversity and that the probability of incorrectly ranking community diversity can reach up to 25%, depending on the dating methods employed. We argue that to reach reliable conclusions, ecological studies must improve their taxon sampling and generate the best phylogeny possible.  相似文献   

7.
Predicting species presence and richness on islands is important for understanding the origins of communities and how likely it is that species will disperse and resist extinction. The equilibrium theory of island biogeography (ETIB) and, as a simple model of sampling abundances, the unified neutral theory of biodiversity (UNTB), predict that in situations where mainland to island migration is high, species-abundance relationships explain the presence of taxa on islands. Thus, more abundant mainland species should have a higher probability of occurring on adjacent islands. In contrast to UNTB, if certain groups have traits that permit them to disperse to islands better than other taxa, then phylogeny may be more predictive of which taxa will occur on islands. Taking surveys of 54 island snake communities in the Eastern Nearctic along with mainland communities that have abundance data for each species, we use phylogenetic assembly methods and UNTB estimates to predict island communities. Species richness is predicted by island area, whereas turnover from the mainland to island communities is random with respect to phylogeny. Community structure appears to be ecologically neutral and abundance on the mainland is the best predictor of presence on islands. With regard to young and proximate islands, where allopatric or cladogenetic speciation is not a factor, we find that simple neutral models following UNTB and ETIB predict the structure of island communities.  相似文献   

8.
Although spatial and temporal patterns of phylogenetic community structure during succession are inherently interlinked and assembly processes vary with environmental and phylogenetic scales, successional studies of community assembly have yet to integrate spatial and temporal components of community structure, while accounting for scaling issues. To gain insight into the processes that generate biodiversity after disturbance, we combine analyses of spatial and temporal phylogenetic turnover across phylogenetic scales, accounting for covariation with environmental differences. We compared phylogenetic turnover, at the species‐ and individual‐level, within and between five successional stages, representing woody plant communities in a subtropical forest chronosequence. We decomposed turnover at different phylogenetic depths and assessed its covariation with between‐plot abiotic differences. Phylogenetic turnover between stages was low relative to species turnover and was not explained by abiotic differences. However, within the late‐successional stages, there was high presence‐/absence‐based turnover (clustering) that occurred deep in the phylogeny and covaried with environmental differentiation. Our results support a deterministic model of community assembly where (i) phylogenetic composition is constrained through successional time, but (ii) toward late succession, species sorting into preferred habitats according to niche traits that are conserved deep in phylogeny, becomes increasingly important.  相似文献   

9.
10.
Fire alters the structure and composition of above‐ and belowground communities with concurrent shifts in phylogenetic diversity. The inspection of postfire trends in the diversity of ecological communities incorporating phylogenetic information allows to better understand the mechanisms driving fire resilience. While fire reduces plant phylogenetic diversity based on the recruitment of evolutionarily related species with postfire seed persistence, it increases that of soil microbes by limiting soil resources and changing the dominance of competing microbes. Thus, during postfire community reassembly, plant and soil microbes might experience opposing temporal trends in their phylogenetic diversity that are linked through changes in the soil conditions. We tested this hypothesis by investigating the postfire evolution of plant and soil microbial (fungi, bacteria and archaea) communities across three 20‐year chronosequences. Plant phylogenetic diversity increased with time since fire as pioneer seeders facilitate the establishment of distantly related late‐successional shrubs. The postfire increase in plant phylogenetic diversity fostered plant productivity, eventually recovering soil organic matter. These shifts over time in the soil conditions explained the postfire restoration of fungal and bacterial phylogenetic diversity, which decreased to prefire levels, suggesting that evolutionarily related taxa with high relative fitness recover their competitive superiority during community reassembly. The resilience to fire of phylogenetic diversity across biological domains helps preserve the evolutionary history stored in our ecosystems.  相似文献   

11.
12.
13.
14.
15.
Facilitation can increase the phylogenetic diversity of plant communities   总被引:2,自引:0,他引:2  
With the advent of molecular phylogenies the assessment of community assembly processes has become a central topic in community ecology. These processes have focused almost exclusively on habitat filtering and competitive exclusion. Recent evidence, however, indicates that facilitation has been important in preserving biodiversity over evolutionary time, with recent lineages conserving the regeneration niches of older, distant lineages. Here we test whether, if facilitation among distant-related species has preserved the regeneration niche of plant lineages, this has increased the phylogenetic diversity of communities. By analyzing a large worldwide database of species, we showed that the regeneration niches were strongly conserved across evolutionary history. Likewise, a phylogenetic supertree of all species of three communities driven by facilitation showed that nurse species facilitated distantly related species and increased phylogenetic diversity.  相似文献   

16.
Dissection of prokaryotic community structure is prerequisite to understand their ecological roles. Various methods are available for such a purpose which amplification and sequencing of 16S rRNA genes gained its popularity. However, conventional methods based on Sanger sequencing technique require cloning process prior to sequencing, and are expensive and labor-intensive. We investigated prokaryotic community structure in tidal flat sediments, Korea, using pyrosequencing and a subsequent automated bioinformatic pipeline for the rapid and accurate taxonomic assignment of each amplicon. The combination of pyrosequencing and bioinformatic analysis showed that bacterial and archaeal communities were more diverse than previously reported in clone library studies. Pyrosequencing analysis revealed 21 bacterial divisions and 37 candidate divisions. Proteobacteria was the most abundant division in the bacterial community, of which Gamma-and Delta-Proteobacteria were the most abundant. Similarly, 4 archaeal divisions were found in tidal flat sediments. Euryarchaeota was the most abundant division in the archaeal sequences, which were further divided into 8 classes and 11 unclassified euryarchaeota groups. The system developed here provides a simple, in-depth and automated way of dissecting a prokaryotic community structure without extensive pretreatment such as cloning.  相似文献   

17.
18.
Functional diversity in ecosystems has traditionally been studied using aboveground plant traits. Despite the known effect of plant traits on the microbial community composition, their effects on the microbial functional diversity are only starting to be assessed. In this study, the phylogenetic structure of arbuscular mycorrhizal (AM) fungal communities associated with plant species differing in life cycle and growth form, that is, plant life forms, was determined to unravel the effect of plant traits on the functional diversity of this fungal group. The results of the 454 pyrosequencing showed that the AM fungal community composition differed across plant life forms and this effect was dependent on the soil collection date. Plants with ruderal characteristics tended to associate with phylogenetically clustered AM fungal communities. By contrast, plants with resource‐conservative traits associated with phylogenetically overdispersed AM fungal communities. Additionally, the soil collected in different seasons yielded AM fungal communities with different phylogenetic dispersion. In summary, we found that the phylogenetic structure, and hence the functional diversity, of AM fungal communities is dependent on plant traits. This finding adds value to the use of plant traits for the evaluation of belowground ecosystem diversity, functions and processes.  相似文献   

19.
Understanding of community assembly has been improved by phylogenetic and trait‐based approaches, yet there is little consensus regarding the relative importance of alternative mechanisms and few studies have been done at large geographic and phylogenetic scales. Here, we use phylogenetic and trait dispersion approaches to determine the relative contribution of limiting similarity and environmental filtering to community assembly of stream fishes at an intercontinental scale. We sampled stream fishes from five zoogeographic regions. Analysis of traits associated with habitat use, feeding, or both resulted in more occurrences of trait underdispersion than overdispersion regardless of spatial scale or species pool. Our results suggest that environmental filtering and, to a lesser extent, species interactions were important mechanisms of community assembly for fishes inhabiting small, low‐gradient streams in all five regions. However, a large proportion of the trait dispersion values were no different from random. This suggests that stochastic factors or opposing assembly mechanisms also influenced stream fish assemblages and their trait dispersion patterns. Local assemblages tended to have lower functional diversity in microhabitats with high water velocity, shallow water depth, and homogeneous substrates lacking structural complexity, lending support for the stress‐dominance hypothesis. A high prevalence of functional underdispersion coupled with phylogenetic underdispersion could reflect phylogenetic niche conservatism and/or stabilizing selection. These findings imply that environmental filtering of stream fish assemblages is not only deterministic, but also influences assemblage structure in a fairly consistent manner worldwide.  相似文献   

20.
  1. Water pollution is one of the most serious aquatic environmental problems worldwide. In China, recent agricultural and industrial development has resulted in rapid changes in aquatic ecosystems. Here, we reveal the effects of water pollution on the phylogenetic community structure of aquatic macrophytes in the Tiaoxi River, China.
  2. We placed a rectangular plot at 47 sites within the Tiaoxi River from the mouth of the river to 88.5 km upstream, in which we recorded species abundance and measured 22 physico-chemical variables. Bayesian phylogeny using the rbcL and matK gene sequences was employed to quantify phylogenetic α- and β-diversity, and test the phylogenetic signal in four growth forms: emergent, floating-leaved, free-floating, and submerged.
  3. Within communities, water contamination and phytoplankton abundance decreased species richness and phylogenetic diversity, which resulted in phylogenetic clustering; species within communities were more closely related to each other than expected. Between communities, differences in geographical distance and phytoplankton abundance resulted in phylogenetic dissimilarity among plots. Aquatic macrophytes showed phylogenetic signals in which related species responded more similarly to disturbance.
  4. Thus, the observed patterns could be explained by environmental filtering and suggested that water pollution by human activity has added more filters to the existing environmental filters that drive the species assembly of macrophyte communities.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号