首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
. Tufts of multiple shoots were produced from dormant, axillary buds of pineapple in vitro. Tiny shoots (2-5 mm) isolated from the tuft of multiple shoots were encapsulated in 3% sodium alginate prepared using hormone-free Murashige and Skoog's basal medium, Murashige and Skoog's vitamins, 0.56 mM myo-inositol and 0.06 M sucrose. The encapsulated shoots represented synthetic seeds that germinated and formed roots in vitro after subculture onto one of the following media solidified with 0.8% agar: (1) hormone-free Murashige and Skoog's basal medium, Murashige and Skoog's vitamins, 0.56 mM myo-inositol and 0.06 M sucrose (Pin1), (2) Murashige and Skoog's basal medium, Murashige and Skoog's vitamins, 0.56 mM myo-inositol, 0.06 M sucrose, 9.67 µM 1-naphthalene acetic acid, 9.84 µM indole-3-butyric acid and 9.29 µM kinetin (Pin2), and (3) White's basal medium, White's vitamins, 0.56 mM myo-inositol, 0.03 M sucrose, 0.54 µM 1-naphthalene acetic acid and 1.97 µM indole-3-butyric acid (Pin3). Pretreatment of shoots in either liquid Pin3 or Pin4 medium (White's basal medium, White's vitamins, 0.56 mM myo-inositol, 0.03 M sucrose, 10.8 µM 1-naphthalene acetic acid and 39.4 µM indole-3-butryic acid) was required for development into plantlets with roots after culture on either Pin1, Pin2 or Pin3 media. One hundred percent germination of synthetic seeds to plantlets occurred after pretreatment of shoots in liquid Pin4 medium for 12 h followed by culture of synthetic seeds on Pin2 medium. Synthetic seeds stored at 4°C remained viable without sprouting for up to 45 days. Plantlets produced in vitro from synthetic seeds were successfully established in soil. The protocol provides an easy and novel propagation system for pineapple, an otherwise vegetatively propagated fruit crop.  相似文献   

3.
Phosphoenolpyruvate carboxykinase has been partially purified from pineapple (Ananas comosus [L.]) leaves. Specific activities obtained show it to be a major activity in this tissue. Above 15 C, the respective activation energies for decarboxylation and carboxylation are 13 and 12 kcal/mol. Below 15 C, there are discontinuities in Arrhenius plots with an associated large increase in activation energy. The adenine nucleotides are preferred to other nucleotides as substrates. The apparent Km values in the carboxylation direction are: ADP 0.13 mm, HCO(3) (-) 3.4 mm, and phosphoenolpyruvate 5 mm. In the decarboxylation direction, the apparent Km values are: ATP 0.02 mm, ADP 0.05 mm, and oxaloacetate 0.4 mm. The decarboxylation activity had an almost equal velocity with either ADP or ATP. The pH optima are between 6.8 and 7. Inhibition of the carboxylation reaction by ATP, pyruvate, and carbonic anhydrase was demonstrated. Decarboxylase specific activities are over twice carboxylation activities. The data support a model in which phosphoenolpyruvate carboxykinase is of physiological significance only during the light period and then only as a decarboxylase.  相似文献   

4.
5.
菠萝种质目标起始密码子(SCoT)遗传多样性分析   总被引:1,自引:0,他引:1  
利用SCo T分子标记技术对来自9个国家或地区的46份菠萝种质进行了遗传多样性分析,并对SCo T标记在菠萝研究中的效率做了探讨。结果表明,SCo T标记在菠萝种质中具有丰富的多态性,引物多态性条带百分比在75%~100%之间,平均为94.61%;引物的有效等位基因数(Ne)、Nei's基因多样性指数(H)、Shannon's信息指数(I)和多态性信息含量(PIC)平均值分别为1.45、0.27、0.41和0.28,表明SCo T标记具有较高的多态性检测效率。基于SCo T标记计算获得的遗传相似系数对菠萝种质做聚类分析,46份菠萝种质可被划分为5个类群,其中,第Ⅰ类群所包含的菠萝种质数量最多,占菠萝种质总数的84.78%。主成分分析获得了与聚类分析不尽一致的结论,但两者反映的种质亲缘关系基本一致。本研究结果将为我国菠萝种质的鉴定、保存和科学利用提供一定的理论依据。  相似文献   

6.
7.
Penicillium funiculosum Thom. was consistently isolated from pineapple-infected fruitlet (black spots). Polyphenol oxidase, peroxidase, and laccase activities were determined in extracts from contiguous and infected fruitlets. Healthy fruitlets showed a rather high level of polyphenol oxidase (optimum pH 7.0), and this activity was tremendously increased (×10) in contiguous infected fruitlets. Furthermore, infected fruitlets also exhibited laccase activity (optimum pH 4.0), while peroxidase was rather constant in both fruitlets. Browning reactions were attributed to qualitative and quantitative modifications of the enzymatic equipment (polyphenol oxidase and laccase) (p<0.0001). In infected fruiltets, sucrose and L-malic acid were present at significantly lower amounts than in healthy ones, likely owing to fungal metabolism (p<0.0001), whereas cell wall material was three times higher, which could be viewed as a defense mechanism to limit expansion of the mycelium. RID= ID= <E5>Correspondence to: </E5>S. Avallone; <E5>email:</E5> avallone&commat;siarc.cnearc.fr Received: 3 September 2002 / Accepted: 25 September 2002  相似文献   

8.
Penicillium funiculosum Thom. was consistently isolated from pineapple-infected fruitlet (black spots). Polyphenol oxidase, peroxidase, and laccase activities were determined in extracts from contiguous and infected fruitlets. Healthy fruitlets showed a rather high level of polyphenol oxidase (optimum pH 7.0), and this activity was tremendously increased (X 10) in contiguous infected fruitlets. Furthermore, infected fruitlets also exhibited laccase activity (optimum pH 4.0), while peroxidase was rather constant in both fruitlets. Browning reactions were attributed to qualitative and quantitative modifications of the enzymatic equipment (polyphenol oxidase and laccase) (p < 0.0001). In infected fruiltets, sucrose and L-malic acid were present at significantly lower amounts than in healthy ones, likely owing to fungal metabolism (p < 0.0001), whereas cell wall material was three times higher, which could be viewed as a defense mechanism to limit expansion of the mycelium.  相似文献   

9.
Multiple shoots were regenerated from leaf explants obtained from in vitro grown shoot cultures of pineapple. Each leaf was horizontally cut into three pieces (~ 0.5 cm, basal, middle and tip) and cultured onto MS basal medium supplemented with 2% sucrose and various growth regulators.The explant containing the basal part of the leaf gave rise to tiny protuberances which grew into shoots.The highest number of shoots were obtained on MS basal medium supplemented with 2,4-D (0.90 µM) and 2iP (0.98 pM).These shoots were subcultured ontowhite’s basal medium supplemented with 1% sucrose, NAA (0.54 µM) and IBA (1.97 µM). Plantlets produced in vitro were transferred to paper cups containing autoclaved soil or Soilrite, hardened in the greenhouse and established in soil.The protocol provides an easy propagation system for pineapple, an otherwise vegetatively propagated fruit crop.  相似文献   

10.
Flowering is a crucial developmental stage in the plant life cycle. A number of different factors, from environmental to chemical, can trigger flowering. In pineapple, and other bromeliads, it has been proposed that flowering is triggered by a small burst of ethylene production in the meristem in response to environmental cues. A 1-amino-cyclopropane-1-carboxylate synthase (ACC synthase) gene has been cloned from pineapple (ACACS2), which is induced in the meristem under the same environmental conditions that induce flowering. Two transgenic pineapple lines have been produced containing co-suppression constructs designed to down-regulate the expression of the ACACS2 gene. Northern analysis revealed that the ACACS2 gene was silenced in a number of transgenic plants in both lines. Southern hybridization revealed clear differences in the methylation status of silenced versus non-silenced plants by the inability of a methylation-sensitive enzyme to digest within the ACACS2 DNA extracted from silenced plants, indicating that methylation is the cause of the observed co-suppression of the ACACS2 gene. Flowering characteristics of the transgenic plants were studied under field conditions in South East Queensland, Australia. Flowering dynamics studies revealed significant differences in flowering behaviour, with transgenic plants exhibiting silencing showing a marked delay in flowering when compared with non-silenced transgenic plants and control non-transformed plants. It is argued that the ACACS2 gene is one of the key contributors towards triggering 'natural flowering' in mature pineapples under commercial field conditions.  相似文献   

11.
By application of aroma extract dilution analysis (AEDA) to an aroma distillate prepared from fresh pineapple using solvent-assisted flavor evaporation (SAFE), 29 odor-active compounds were detected in the flavor dilution (FD) factor range of 2 to 4,096. Quantitative measurements performed by stable isotope dilution assays (SIDA) and a calculation of odor activity values (OAVs) of 12 selected odorants revealed the following compounds as key odorants in fresh pineapple flavor: 4-hydroxy-2,5-dimethyl-3(2H)-furanone (HDF; sweet, pineapple-like, caramel-like), ethyl 2-methylpropanoate (fruity), ethyl 2-methylbutanoate (fruity) followed by methyl 2-methylbutanoate (fruity, apple-like) and 1-(E,Z)-3,5-undecatriene (fresh, pineapple-like). A mixture of these 12 odorants in concentrations equal to those in the fresh pineapple resulted in an odor profile similar to that of the fresh juice. Furthermore, the results of omission tests using the model mixture showed that HDF and ethyl 2-methylbutanoate are character impact odorants in fresh pineapple.  相似文献   

12.
B G Smith  P J Harris 《Plant physiology》1995,107(4):1399-1409
The polysaccharides of cell walls isolated from the fleshy, edible part of the fruit of the monocotyledon pineapple [Ananas comosus (L.) Merr.] (family Bromeliaceae) were analyzed chemically. These cell walls were derived mostly from parenchyma cells and were shown histochemically to be unlignified, but they contained ester-linked ferulic acid. The analyses indicated that the noncellulosic polysaccharide composition of the cell walls was intermediate between that of unlignified cell walls of species of the monocotyledon family Poaceae (grasses and cereals) and that of unlignified cell walls of dicotyledons. Glucuronoarabinoxylans were the major non-cellulosic polysaccharides in the pineapple cell walls. Xyloglucans were also present, together with small amounts of pectic polysaccharides and glucomannans (or galactoglucomannans). The large amounts of glucuronoarabinoxylans and small amounts of pectic polysaccharides resemble the noncellulosic polysaccharide composition of the unlignified cell walls of the Poaceae. However, the absence of (1-->3,1-->4)-beta-glucans, the presence of relatively large amounts of xyloglucans, and the possible structure of the xyloglucans resemble the noncellulosic polysaccharide composition of the unlignified cell walls of dicotyledons.  相似文献   

13.
Two sulfur-containing compounds, (S)-2-amino-5-((R)-1-carboxy-2-((E)-3-(4-hydroxy-3-methoxyphenyl)allylthio)ethyl-amino)-5-oxopentanoic acid (1) and (S)-2-amino-5-((R)-1-(carboxymethylamino)-3-((E)-3-(4-hydroxyphenyl)allylthio)-1-oxopropan-2-ylamino)-5-oxopentanoic acid (2), and one 1H-pyrrole-2-carboxylic acid derivative, 6-(3-(1H-pyrrole-2-carbonyloxy)-2-hydroxypropoxy)-3,4,5-trihydroxy-tetrahydro-2H-pyran-2-carboxylic acid (3), together with eighteen known phenolic compounds, were isolated from the fruits of pineapple. Their structures were elucidated by a combination of spectroscopic analyses. Some of these compounds showed inhibitory activities against tyrosinase. The half maximal inhibitory concentration values of compounds 1, 4, 5, 6, 7 are lower than 1 mM. These compounds may contribute to the well-known anti-browning effect of pineapple juice and be potential skin whitening agents in cosmetic applications.  相似文献   

14.
A random amplified polymorphic DNA (RAPD) analysis of spineless (variant phenotype) plants obtained from micropropagated dormant pineapple (Ananas comosus L., Merr.) axillary buds was performed using arbitrary 10-mer oligonucleotide primers. This was done to investigate the genetic fidelity of the regenerants and to distinguish these variants from regenerants bearing the normal spined phenotype. Of the 58 arbitrary primers used, 29 produced bands unique to the spineless phenotype, and 30 produced bands unique to the spined phenotype. A total of 914 bands were scored, 55 of which were polymorphic to the spineless phenotype and 51 of which were polymorphic to the spined phenotype. On the basis of RAPD amplification products, genetic similarity was estimated in both types of regenerants using similarity coefficients (Nei and Li, 1979). The characteristic finger-prints generated by each probe emphasize genetic variability of regenerants. This technique is suitable for analyzing variant regenerants induced in vitro.  相似文献   

15.
16.
Liu  Min  Wu  Qing-Song  Liu  Sheng-Hui  Zhang  Hong-Na  Lin  Wen-Qiu  Zhang  Xiu-Mei  Li  Yun-He 《Plant Growth Regulation》2021,94(3):303-321
Plant Growth Regulation - Exogenous ethylene (ethephon) is widely used to induce pineapple (Ananas comosus (L.) Merr.) flowering. However, economic losses often occur due to inappropriate flower...  相似文献   

17.
18.
An investigation was made of the respiratory properties and the role of the mitochondria isolated from one phosphoenolpyruvate carboxykinase (PCK)-CAM plant Ananas comosus (pineapple) in malate metabolism during CAM phase III. Pineapple mitochondria showed very high malate dehydrogenase (MDH), and low malic enzyme (ME) and glutamate-oxaloacetate transaminase (GOT) activities. The mitochondria readily oxidized succinate and NADH with high rates and coupling, while they only oxidized NADPH in the presence of Ca(2+). Pineapple mitochondria oxidized malate with low rates under most assay conditions, despite increasing malate concentrations, optimizing pH, providing cofactors such as coenzyme A, thiamine pyrophosphate, and NAD(+), and supplying individually external glutamate or GOT. However, providing glutamate and GOT simultaneously strongly increased the rates of malate oxidation. The OAA easily permeated the mitochondrial membranes to import into or export out of pineapple mitochondria during malate oxidation, but the mitochondria did not consume external Asp or alpha-KG. These results suggest that OAA played a significant role in the mitochondrial malate metabolism of pineapple, in which malate was mainly oxidized by active mMDH to produce OAA which could be exported outside the mitochondria via a malate-OAA shuttle. Cytosolic GOT then consumed OAA by transamination in the presence of glutamate, leading to a large increase in respiration rates. The malate-OAA shuttle might operate as a supporting system for decarboxylation in phase III of PCK-CAM pineapple. This shuttle system may be important in pineapple to provide a source of energy and substrate OAA for cytosolic PCK activity during the day when cytosolic OAA and ATP was limited for the overall decarboxylation process.  相似文献   

19.
Nitrogen-fixing bacteria isolated from banana (Musa spp.) and pineapple (Ananas comosus (L.) Merril) were characterized by amplified 16S ribosomal DNA restriction analysis and 16S rRNA sequence analysis. Herbaspirillum seropedicae, Herbaspirillum rubrisubalbicans, Burkholderia brasilensis, and Burkholderia tropicalis were identified. Eight other types were placed in close proximity to these genera and other alpha and beta Proteobacteria.  相似文献   

20.
Nitrogen-fixing bacteria isolated from banana (Musa spp.) and pineapple (Ananas comosus (L.) Merril) were characterized by amplified 16S ribosomal DNA restriction analysis and 16S rRNA sequence analysis. Herbaspirillum seropedicae, Herbaspirillum rubrisubalbicans, Burkholderia brasilensis, and Burkholderia tropicalis were identified. Eight other types were placed in close proximity to these genera and other alpha and beta Proteobacteria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号