首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Park SW  Stevens NM  Vivanco JM 《Planta》2002,216(2):227-234
Ribosome-inactivating proteins (RIPs) are enzymes that cleave a specific adenine base from the highly conserved sarcin/ricin (S/R) loop of the large ribosomal RNA, thus arresting protein synthesis at the translocation step. In the present study, we employed three RIPs to dissect the antifungal activity of RIPs as plant defense proteins. We measured the catalytic activity of RAT (the catalytic A-chain of ricin from Ricinus communis L.), saporin-S6 (from Saponaria officinalis L.), and ME (RIP from Mirabilis expansa R&P) against intact ribosomal substrates isolated from various pathogenic fungi. We further determined the enzymatic specificity of these three RIPs against fungal ribosomes, from Rhizoctonia solani Kuhn, Alternaria solani Sorauer, Trichoderma reesei Simmons and Candida albicans Berkhout, and correlated the data with antifungal activity. RAT showed the strongest toxicity against all tested fungal ribosomes, except for the ribosomes isolated from C. albicans, which were most susceptible to saporin. RAT and saporin showed higher enzymatic activity than ME against ribosomes from all of the fungal species assayed, but did not show detectable antifungal activity. In contrast, ME showed substantial inhibitory activity against fungal growth. Using N-hydroxysuccinimide-fluorescein labeling of RIPs and fluorescence microscopy, we determined that ME was targeted to the surface of fungal cells and transferred into the cells. Thus, ME caused ribosome depurination and subsequent fungal mortality. In contrast, saporin did not interact with fungal cells, correlating with its lack of antifungal activity.  相似文献   

2.
Ribosome inactivating proteins (RIPs) like ricin, pokeweed antiviral protein (PAP) and Shiga‐like toxins 1 and 2 (Stx1 and Stx2) share the same substrate, the α‐sarcin/ricin loop, but differ in their specificities towards prokaryotic and eukaryotic ribosomes. Ricin depurinates the eukaryotic ribosomes more efficiently than the prokaryotic ribosomes, while PAP can depurinate both types of ribosomes. Accumulating evidence suggests that different docking sites on the ribosome might be used by different RIPs, providing a basis for understanding the mechanism underlying their kingdom specificity. Our previous results demonstrated that PAP binds to the ribosomal protein L3 to depurinate the α‐sarcin/ricin loop and binding of PAP to L3 was critical for its cytotoxicity. Here, we used surface plasmon resonance to demonstrate that ricin toxin A chain (RTA) binds to the P1 and P2 proteins of the ribosomal stalk in Saccharomyces cerevisiae. Ribosomes from the P protein mutants were depurinated less than the wild‐type ribosomes when treated with RTA in vitro. Ribosome depurination was reduced when RTA was expressed in the ΔP1 and ΔP2 mutants in vivo and these mutants were more resistant to the cytotoxicity of RTA than the wild‐type cells. We further show that while RTA, Stx1 and Stx2 have similar requirements for ribosome depurination, PAP has different requirements, providing evidence that the interaction of RIPs with different ribosomal proteins is responsible for their ribosome specificity.  相似文献   

3.
Ribosome-inactivating proteins (RIPs) are N-glycosylases that remove a specific adenine from the sarcin/ricin loop of the large rRNA in a manner analogous to N-glycosylases that are involved in DNA repair. Some RIPs have been reported to remove adenines from single-stranded DNA and cleave double-stranded supercoiled DNA. The molecular basis for the activity of RIPs on double-stranded DNA is not known. Pokeweed antiviral protein (PAP), a single-chain RIP from Phytolacca americana, cleaves supercoiled DNA into relaxed and linear forms. Double-stranded DNA treated with PAP contains apurinic/apyrimidinic (AP) sites due to the removal of adenine. Using an active-site mutant of PAP (PAPx) which does not depurinate rRNA, we present evidence that double-stranded DNA treated with PAPx does not contain AP sites and is not cleaved. These results demonstrate for the first time that PAP cleaves supercoiled double-stranded DNA using the same active site that is required for depurination of rRNA.  相似文献   

4.
Wang HX  Ng TB 《Life sciences》2000,67(21):2631-2638
The seeds of Lagenaria siceraria (Family Cucurbitaceae) were extracted with water and the extract was lyophilized. The lyophilized extract was chromatographed on a DEAE-cellulose column in 10 mM Tris-HCl buffer (pH 7.2). The unadsorbed fraction was applied to an Affi-gel Blue gel column previously equilibrated with the same buffer. After removal of unadsorbed materials, the adsorbed proteins were eluted with 1.5 M NaCl in the Tris-HCl buffer. After dialysis the adsorbed fraction was loaded on a CM-Sepharose CL-6B column which had been equilibrated with and was eluted with the same buffer. After elution of unadsorbed proteins, the column was eluted with a gradient of 0-1 M NaCl in 10 mM Tris-HCl buffer (pH 7.2). The fraction eluting at about 0.55 M NaCl, which represented pure ribosome inactivating protein (RIP), inhibited cell-free translation in a rabbit reticulocyte system with an IC50 of 0.21 nM and exerted ribonuclease activity on yeast tRNA with an activity of 45 U/mg. The RIP was designated lagenin. It possessed a molecular weight of 20 kDa, smaller than the range of 26-32 kDa reported for other RIPs. The N-terminal sequence of lagenin exhibited a lesser extent of similarity to those of other Cucurbitaceae RIPs, characterized by a deletion of the first three amino acid residues and a replacement of the 4th (Phe), 17th (Phe), 18th (Ile) and 22nd (Arg) residues which are invariant in other RIPs.  相似文献   

5.
Summary Incubation of HeLa cells with Encephalomyocarditis virus (EMC) induces permeability of the cell membrane to protein toxins, such as alpha sarcin. To induce permeability to this toxin only 5 min incubation of cells with virus is needed. On the other hand, less than 1 min exposure of the susceptible cells to alpha sarcin produces maximal inhibition of protein synthesis. EMC virus treated with UV-light, although unable to replicate, can still induce the entrance of alpha sarcin into HeLa cells, but the virion loses this capacity after heating at 60 °C for 10 min. These findings suggest that an integral viral genome is not necessary to make the cells permeable to alpha sarcin, and that a virion protein might be involved in this phenomenon. Although human interferon prevents productive EMC infection, it does not affect the virus-induced entrance of alpha sarcin into the cells. The plasma membrane of cells that have been treated with virion particles can recover its initial lack of permeability to alpha sarcin after 2 h at 37 °C. Poliovirus modifies membrane permeability in human HeLa cells, but it has no effect on mouse L cells. This fact suggests that viral attachment to specific cell surface receptors is necessary to induce permeability, since receptors to poliovirus are only present in primate cells.  相似文献   

6.
Ribosome inactivating proteins (RIPs) inhibit protein synthesis depurinating a conserved residue in the sarcin/ricin loop of ribosomes. Some RIPs are only active against eukaryotic ribosomes, but other RIPs inactivate with similar efficiency prokaryotic and eukaryotic ribosomes, suggesting that different RIPs would interact with different proteins. The SRL in Trypanosoma cruzi ribosomes is located on a 178b RNA molecule named 28Sδ. In addition, T. cruzi ribosomes are remarkably resistant to TCS. In spite of these peculiarities, we show that TCS specifically depurinate the predicted A51 residue on 28Sδ. We also demonstrated that the C-terminal end of ribosomal P proteins is needed for full activity of the toxin. In contrast to TCS, PAP inactivated efficiently T.cruzi ribosomes, and most importantly, does not require from the C-terminal end of P proteins. These results could explain, at least partially, the different selectivity of these toxins against prokaryotic and eukaryotic ribosomes.  相似文献   

7.
Ribosome inactivating proteins (RIPs) are plant proteins with enzymatic activity identified as rRNA N-glycosidase (EC 3.2.2.22), which cleaves the N-glycosidic bond of a specific adenine on the ricin/sarcin region of rRNA, thus causing inhibition of protein synthesis. They also depurinate extensively DNA and other polynucleotides. The three-dimensional structure of dianthin 30, a type 1 (single-chain) RIP of Dianthus caryophyllus (leaves), is now described at 1.4 angstroms, a resolution never achieved before for any RIP. The fold typical of RIPs is conserved, despite some differences in the loop regions. The general structure comparison by superimposed alpha-carbon (249 atoms) and the sequence alignment by structure for dianthin 30 and saporin-S6 give a root mean square deviation of 0.625 angstroms. Despite the differences reported for the biological activities of the two RIPs, their structures fit quite well and both show a protein segment containing strands beta7, beta8, and beta9 shorter than other RIPs. However, the surface electrostatic potential in the active site region neatly distinguishes dianthin 30 from saporin-S6. The possible relationship between the charge distribution and the behavior of the proteins toward different substrates is discussed.  相似文献   

8.
On the conformation of the alpha sarcin stem-loop of 28S rRNA.   总被引:1,自引:0,他引:1  
A A Szewczak  Y L Chan  P B Moore  I G Wool 《Biochimie》1991,73(7-8):871-877
A synthetic RNA that is a substrate for the cytotoxin alpha sarcin has been examined by NMR. The molecule in question includes the entire sequence of the so-called alpha sarcin loop from rat 28S rRNA (U4316-C4332), and it is cleaved at the residue that corresponds to G4325, the site of alpha sarcin cleavage in 28S rRNA. The data show that the terminal stem designed into the molecule's sequence exists, as expected, and that its loop has a definite structure, which is stable to at least 40 degrees C under ionic conditions compatible with its cleavage by alpha sarcin.  相似文献   

9.
10.
Ribosome-inactivating proteins (RIPs) are N-glycosidases that remove a specific adenine from the sarcin/ricin loop of the large rRNA, thus arresting protein synthesis at the translocation step. In the present study, a protein termed tobacco RIP (TRIP) was isolated from tobacco (Nicotiana tabacum) leaves and purified using ion exchange and gel filtration chromatography in combination with yeast ribosome depurination assays. TRIP has a molecular mass of 26 kD as evidenced by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and showed strong N-glycosidase activity as manifested by the depurination of yeast rRNA. Purified TRIP showed immunoreactivity with antibodies of RIPs from Mirabilis expansa. TRIP released fewer amounts of adenine residues from ribosomal (Artemia sp. and rat ribosomes) and non-ribosomal substrates (herring sperm DNA, rRNA, and tRNA) compared with other RIPs. TRIP inhibited translation in wheat (Triticum aestivum) germ more efficiently than in rabbit reticulocytes, showing an IC50 at 30 ng in the former system. Antimicrobial assays using highly purified TRIP (50 microg mL(-1)) conducted against various fungi and bacterial pathogens showed the strongest inhibitory activity against Trichoderma reesei and Pseudomonas solancearum. A 15-amino acid internal polypeptide sequence of TRIP was identical with the internal sequences of the iron-superoxide dismutase (Fe-SOD) from wild tobacco (Nicotiana plumbaginifolia), Arabidopsis, and potato (Solanum tuberosum). Purified TRIP showed SOD activity, and Escherichia coli Fe-SOD was observed to have RIP activity too. Thus, TRIP may be considered a dual activity enzyme showing RIP-like activity and Fe-SOD characteristics.  相似文献   

11.
Cinnamomin a Versatile Type Ⅱ Ribosome-inactivating Protein   总被引:1,自引:0,他引:1  
Ribosome-inactivating proteins (RIPs) are a groupof ribotoxins widely distributed in the plant kingdomas well as in certain fungi, algae and bacteria. RIPs havebeen thoroughly reviewed in references [1–6]. Theseproteins act as RNA N-glycosidase (rRNA N-glycosidase,EC 3.2.2.22) to specifically remove an adenine fromthe universally conserved sarcin/ricin domain (S/R domain)of the largest RNA in ribosome [7–9] and to render itincapable of carrying out protein synthesis (Fig. 1). Based …  相似文献   

12.
Interaction of alpha 2-HS-glycoprotein with immobilized triazine dyes   总被引:1,自引:0,他引:1  
We studied the interaction of alpha 2-HS-glycoprotein with immobilized Cibacron blue F3-GA (Blue A) and Procion red HE-3B (Red A). When whole plasma was applied on the Blue A, alpha 2-HS-glycoprotein remained unbound, together with other plasma proteins. In contrast, when this fraction was applied on the Red A, alpha 2-HS-glycoprotein was shown to bind tightly and was eluted with a linear sodium chloride gradient between 0.5 and 0.8 M. This proved to be a useful two-step technique for the purification of alpha 2-HS-glycoprotein. Further characterization revealed that the protein appeared homogeneous by immunoelectrophoresis and SDS-polyacrylamide gel electrophoresis with yields greater than 30%. A small (less than 5%) but significant fraction of alpha 2-HS-glycoprotein with a same molecular weight as the native protein was consistently found in the wash of the Red A column, and may correspond to alpha 2-HS-glycoprotein bound to a yet unidentified ligand.  相似文献   

13.
Ribosome-inactivating proteins (RIPs) are N-glycosidases that depurinate a specific adenine residue in the conserved sarcin/ricin loop of ribosomal RNA. This modification renders the ribosome unable to bind the elongation factors, thereby inhibiting the protein synthesis. Maize RIP, a type III RIP, is unique compared to the other type I and type II RIPs because it is synthesized as a precursor with a 25-residue internal inactivation region, which is removed in order to activate the protein. In this study, we describe the first solution structure of this type of RIP, a  28-kDa active mutant of maize RIP (MOD). The overall protein structure of MOD is comparable to those of the other type I RIPs and the A-chain of type II RIPs but shows significant differences in specific regions, including (1) shorter β6 and αB segments, probably for accommodating easier substrate binding, and (2) an α-helix instead of an antiparallel β-sheet in the C-terminal domain, which has been reported to be involved in binding ribosomal protein P2 in some RIPs. Furthermore, NMR chemical shift perturbation experiments revealed that the P2 binding site on MOD is located at the N-terminal domain near the internal inactivation region. This relocation of the P2 binding site can be rationalized by concerted changes in the electrostatic surface potential and 3D structures on the MOD protein and provides vital clues about the underlying molecular mechanism of this unique type of RIP.  相似文献   

14.
Complete amino acid sequence of the Aspergillus cytotoxin mitogillin   总被引:4,自引:0,他引:4  
The complete amino acid sequence of the cytotoxin mitogillin has been determined by sequencing the intact chain and peptide fragments produced by cleavage at methionyl, arginyl, lysyl, and tryptophanyl residues and at one aspartic acid-proline bond. The protein consists of 149 amino acid residues with alanine at the NH2 terminus and histidine at the COOH terminus. The calculated Mr of the native mitogillin was 16 867. The native molecule presents two disulfide bridges, one between cysteine residues at positions 5 and 147 and another one between cysteine residues at positions 75 and 131. The amino acid sequence of mitogillin shows 86% homology with another cytotoxic protein called alpha-sarcin.  相似文献   

15.
Transducin, a retinal G-protein, has been shown to exist as heterotrimers of alpha (39,000), beta (36,000), and gamma (approximately 7,000) subunits. Blue Sepharose CL-6B column chromatography of a transducin preparation extracted with a metal-free, low salt buffer containing GTP showed three distinct alpha and two distinct beta gamma activities in frog (Rana catesbeiana) rod outer segment. The binding of a hydrolysis-resistant GTP analog in these alpha fractions was proportional to the amount of the M(r) 39,000 protein. The first alpha was eluted in a complex with an inhibitory subunit of cGMP phosphodiesterase, but alpha subunits in the second and the third fractions were not complexed with any proteins. Two-dimensional gel electrophoresis and characterization with regard to the interaction with the inhibitory subunit of cGMP phosphodiesterase suggested that the first and the second alpha s were the same protein; however, the third alpha showed different characters as follows. We designated alpha in the first two fractions as alpha 1, and alpha in the third fraction as alpha 2. Nonlinear regression analysis for the binding of a hydrolysis-resistant GTP analog to both alpha subunits revealed a single class of GTP binding sites with an apparent stoichiometry of 1 mol of GTP/mol of alpha. Compared with alpha 1, alpha 2 required larger amounts of rhodopsin and beta gamma for the binding of a hydrolysis-resistant GTP analog. alpha 2 also showed less binding with the inhibitory subunit of cGMP phosphodiesterase. Both alpha 1 and alpha 2 complexed with beta gamma or beta delta (described below) were substrates for pertussis toxin-dependent ADP-ribosylation. The protein profiles of two beta gamma fractions revealed that the main fraction was composed of a beta gamma complex; however, the second active fraction was composed of beta complexed with delta (M(r) 12,000). Compared with beta gamma, beta delta stimulated GTP binding to alpha 1 at approximately 10-fold higher concentration. Two-dimensional gel electrophoresis revealed five beta and two gamma isoforms in beta gamma. Only one beta isoform was present in beta delta. The diversity of transducin subunits may reflect different signaling pathways in visual signal transduction.  相似文献   

16.
Fungal ribotoxins, such as mitogillin and the related Aspergillus toxins restrictocin and α-sarcin, are highly specific ribonucleases, which inactivate the ribosome enzymatically by cleaving the eukaryotic 28S RNA of the large ribosomal subunit at a single phosphodiester bond. The site of cleavage occurs between G4325 and A4326, which are present in a 14-base sequence (the α-sarcin loop) conserved among the large subunit rRNAs of all living species. The amino acid residues involved in the cytotoxic activities of mitogillin were investigated by introducing point mutations using hydroxylamine into a recombinant Met-mature mitogillin (mitogillin with a Met codon at the N-terminus and no leader sequence) gene constructed from an Aspergillus fumigatus cDNA clone. These constructs were cloned into a yeast expression vector under the control of the GAL1 promoter and transformed into Saccharomyces cerevisiae. Upon induction of mitogillin expression, surviving transformants revealed that substitutions of certain amino acid residues on mitogillin abolished its cytotoxicity. Non-toxic mutant genes were cloned into an Escherichia coli expression vector, the proteins overexpressed and purified to homogeneity and their activities examined by in vitro ribonucleolytic assays. These studies identified the His-49Tyr, Glu-95Lys, Arg-120Lys and His-136Tyr mutations to have a profound impact on the ribonucleolytic activities of mitogillin. We conclude that these residues are key components of the active site contributing to the catalytic activities of mitogillin.  相似文献   

17.
Ribotoxins are ribosome inactivator proteins with high specificity against the sarcin/ricin domain of the 28S ribosomal RNA. We examined the presence of ribotoxin genes in isolates of species recently assigned to Aspergillus section Clavati using specific primer pairs. All species assigned to this section have been found to carry ribotoxin genes. Phylogenetic analysis of the sequences of the amplified gene fragments allowed us to classify the genes to different groups including the alpha-sarcin, gigantin, c-sarcin and mitogillin/restrictocin families. Two species, A. longivesica and N. acanthosporus produced ribotoxins which were only distantly related to gigantins and c-sarcins, respectively. Comparison of the protein sequences of the genes to known ribotoxin sequences revealed that all of them carry the presumed catalytic residues of ribotoxins, the cystein residues, and also the two Trp residues of alpha-sarcin conserved in all ribotoxins known so far. These data indicate that these genes probably encode active ribotoxins. Further studies are in progress to examine the secretion and activities of these new ribotoxins.  相似文献   

18.
α-Sarcin, restrictocin, and mitogillin, three antitumor proteins, have been compared in terms of chemical composition as well as secondary and tertiary structure. The amino acid composition of the three polypeptides showed that restrictocin and mitogillin are essentially identical, α-Sarcin is also very similar to the other two proteins, although it lacks one methionine in its amino acid composition. Peptide maps of restrictocin and mitogillin coincide, except that one additional peptide is present in the mitogillin fingerprint. Although the α-sarcin map is different from the other two fingerprints, seven tryptic peptides with identical chromatographic and electrophoretic properties as well as amino acid composition were identified. The secondary and tertiary structures of mitogillin and restrictocin are identical from circular dichroism and difference spectroscopy studies. α-Sarcin has slightly different spectroscopic properties than the other two proteins. From these studies, the three proteins could be considered homologous polypeptides.  相似文献   

19.
Specific cleavage of ribosomal RNA caused by alpha sarcin.   总被引:15,自引:6,他引:9       下载免费PDF全文
Alpha sarcin causes the specific cleavage of RNA from 80S ribosomes and 60S subunits of yeast, but not from the 40S subunits to produce a small RNA fragment. The fragment was also produced on treatment of the 60S subunits of wheat germ ribosomes. The fragment has a molecular weight of 100,000 and is a cleavage product of the large RNA species in the 60S subunits. The fragment is not derived from the 5'end of the yeast 25S RNA nor does it bind to 5.8S RNA and we propose that the fragment represents the 3' terminal 320 nucleotides of 25S rRNA. The ability to produce fragment could not be separated from the ability of alpha sarcin to inhibit protein synthesis. Alpha sarcin also causes the specific cleavage of the 23S RNA of the E. coli subunit to produce a smaller fragment of RNA than that produced from eukaryote ribosomes.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号