首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Dictyostelium discoideum, a unicellular organism capable of developing into a multicellular structure, is a powerful model system to study a variety of biological processes. Because it is inexpensive and relatively easy to grow, Dictyostelium is also frequently used in teaching laboratories. Here we describe conditions for successfully growing and developing Dictyostelium cells and methods for long-term storage of Dictyostelium amoebae and spores.  相似文献   

2.
Dictyostelium discoideum, an organism that undergoes development and that is amenable to biochemical and molecular genetic approaches, is an attractive model organism with which to study the role of tyrosine phosphorylation in cell-cell communication. We report the presence of protein-tyrosine kinase genes in D. discoideum. Screening of a Dictyostelium cDNA expression library with an anti-phosphotyrosine antibody identifies fusion proteins that exhibit protein-tyrosine kinase activity. Two distinct cDNAs were identified and isolated. Though highly homologous to protein kinases in general, these kinases do not exhibit many of the hallmarks of protein-tyrosine kinases of higher eucaryotes. In addition, these genes are developmentally regulated, which suggests a role for tyrosine phosphorylation in controlling Dictyostelium development.  相似文献   

3.
Nonlinear dielectric spectroscopy (NLDS) was used to detect interaction of a pulsed magnetic field (PMF) with membrane protein dynamics in aggregating Dictyostelium discoideum amoebae. In the experiments reported here, a strong nonlinear dielectric response of Dictyostelium discoideum cells is shown, and a distinctive nonlinear dielectric response of cells previously exposed to PMF is shown. The method of NLDS is shown to be capable of monitoring and charting the dynamic frequency response of the cell to an electromagnetic field.  相似文献   

4.
Highlighting the role of Ras and Rap during Dictyostelium chemotaxis   总被引:1,自引:0,他引:1  
Chemotaxis, the directional movement towards a chemical compound, is an essential property of many cells and has been linked to the development and progression of many diseases. Eukaryotic chemotaxis is a complex process involving gradient sensing, cell polarity, remodelling of the cytoskeleton and signal relay. Recent studies in the model organism Dictyostelium discoideum have shown that chemotaxis does not depend on a single molecular mechanism, but rather depends on several interconnecting pathways. Surprisingly, small G-proteins appear to play essential roles in all these pathways. This review will summarize the role of small G-proteins in Dictyostelium, particularly highlighting the function of the Ras subfamily in chemotaxis.  相似文献   

5.
新型重组糖蛋白表达载体--盘基网柄菌   总被引:1,自引:0,他引:1  
近年来,盘基网柄菌作为异源重组糖蛋白表达载体的研究受到了学术界的重视,已经有多种具有生物活性的复杂糖蛋白成功地得到了表达。通过对表达产物的研究发现,盘基网柄菌具有各种翻译后加工机制,例如磷酸化、酰基化及形成GPI(糖基磷脂酰基醇)锚点等,具有类似于高等动物的糖基化修饰能力。与哺乳动物细胞表达载体相比较,盘基网柄菌具有培养成本低廉、细胞生长迅速及易于大规模培养的优势。盘基网柄菌有可能发展成为一种有重要应用前景的糖蛋白表达载体系统。  相似文献   

6.
Liposomes labelled with 125I-labelled albumin were used as carriers for the introduction of albumin into vegetative and aggregation competent cells of Dictyostelium discoideum. The subcellular distribution of albumin and its degradation products was followed. The results show that 44 and 67% of the radioactivity incorporated by vegetative and aggregation competent cells, respectively, was found in soluble form in the cell. These figures fall to 26 and 34% in the presence of metabolic inhibitors with a concomitant increase of membrane-bound radioactivity. Differences in the mode of liposome--cell interaction in the two stages of development of the organism and the possibility that metabolic inhibitors may operate at the site of the vacuole--liposome fusion step are discussed.  相似文献   

7.
盘基网柄菌作为致病菌宿主模型的研究主要有:筛选致病菌株及相应突变菌株毒性;鉴别对致病菌易感性和抗性的突变细胞宿主;宿主细胞的有效标记、已完成的基因组计划以及宿主细胞与致病菌间信号转导通路的相互作用;这些都表明盘基网柄菌是致病机制研究的理想宿主模型。  相似文献   

8.
The regulation of tissue and organism size plays an essential, but poorly understood, role in multicellular development. Genes have been identified that affect body and organ size in a number of animals. Two recently identified genes, smlA and countin, are required for the proper function of a cell-counting mechanism that regulates organism size in the eukaryotic microorganism Dictyostelium discoideum. The discovery of this process now allows the study of size regulation in a simple multicellular system.  相似文献   

9.
Mitochondria play a pivotal role in apoptosis in multicellular organisms by releasing apoptogenic factors such as cytochrome c that activate the caspases effector pathway, and apoptosis-inducing factor (AIF) that is involved in a caspase-independent cell death pathway. Here we report that cell death in the single-celled organism Dictyostelium discoideum involves early disruption of mitochondrial transmembrane potential (DeltaPsim) that precedes the induction of several apoptosis-like features, including exposure of the phosphatidyl residues at the external surface of the plasma membrane, an intense vacuolization, a fragmentation of DNA into large fragments, an autophagy, and the release of apoptotic corpses that are engulfed by neighboring cells. We have cloned a Dictyostelium homolog of mammalian AIF that is localized into mitochondria and is translocated from the mitochondria to the cytoplasm and the nucleus after the onset of cell death. Cytoplasmic extracts from dying Dictyostelium cells trigger the breakdown of isolated mammalian and Dictyostelium nuclei in a cell-free system, and this process is inhibited by a polyclonal antibody specific for Dictyostelium discoideum apoptosis-inducing factor (DdAIF), suggesting that DdAIF is involved in DNA degradation during Dictyostelium cell death. Our findings indicate that the cell death pathway in Dictyostelium involves mitochondria and an AIF homolog, suggesting the evolutionary conservation of at least part of the cell death pathway in unicellular and multicellular organisms.  相似文献   

10.
A key step in the development of all multicellular organisms is the differentiation of specialized cell types. The eukaryotic microorganism Dictyostelium discoideum provides a unique experimental system for studying cell-type determination and spatial patterning in a developing multicellular organism. Unlike metazoans, which become multicellular by undergoing many rounds of cell division after fertilization of an egg, the social amoeba Dictyostelium achieves multicellularity by the aggregation of approximately 10(5) cells in response to nutrient depletion. Following aggregation, cell-type differentiation and morphogenesis result in a multicellular organism with only a few cell types that exhibit a defined patterning along the anterior-posterior axis of the organism. Analysis of the mechanisms that control these processes is facilitated by the relative simplicity of Dictyostelium development and the availability of molecular, genetic, and cell biological tools. Interestingly, analysis has shown that many molecules that play integral roles in the development of higher eukaryotes, such as PKA, STATs, and GSK-3, are also essential for cell-type differentiation and patterning in Dictyostelium. The role of these and other signaling pathways in the induction, maintenance, and patterning of cell types during Dictyostelium development is discussed.  相似文献   

11.
Following consumption of the food supply, cells of the cellular slime mould Dictyostelium discoideum aggregate and form a multicellular organism. The mechanism for cell aggregation is chemotaxis. The chemotactic signal in D. discoideum is released periodically from aggregation centers and propagated from cell to cell. cAMP mediates cell aggregation by acting as chemotactic attractant and as propagator of the signal. cAMP signals are measured by cell-surface receptors. Recent evidence indicates a role for cGMP during cAMP-mediated cell aggregation in D. discoideum .
During cell differentiation to aggregation competence, cAMP binding sites appear at the cell surface, and the activity of the enzymes adenylate cyclase and phosphodiesterase increases several-fold. In the present work we investigate the synthesis of cGMP in D. discoideum . Conditions for the assay of guanylate cyclase in cell homogenates are described. Guanylate cyclase activity was followed during cell differentiation to aggregation competence and found to increase fourfold. These results indicate that cGMP is involved in cell differentiation of D. discoideum . In contrast to adenylate cyclase, which is activated by cAMP, guanylate cyclase was under our conditions activated neither by cAMP, nor by folic acid.  相似文献   

12.
The presence of an endocytic pathway in cells from a wide range of species and the conservation of the proteins involved in this process throughout evolution suggest that endocytosis is of fundamental importance for the eukaryotic cell. However, some surprising recent results have shown that both Dictyostelium discoideum and Saccharomyces cerevisiae can live under laboratory conditions with substantially reduced levels of endocytosis. In this review, I concentrate on endocytosis in S. cerevisiae. Recent progress in the study of intermediates of the endocytic pathway and of mutants affecting the endocytic pathway make this organism an interesting model with which to study the mechanism and functions of endocytosis.  相似文献   

13.
The cellular slime mold Dictyostelium discoideum is a fascinating organism, not only for biologists, but also for physicists. Since the Belousov-Zhabotinskii reaction pattern, a well-known non-linear phenomenon in chemistry, was observed during aggregation of Dictyostelium amoebae, Dictyostelium has been one of the major subjects of non-linear dynamics studies. Macroscopic theory, such as continuous cell density approximation, has been a common approach to studying pattern formation since the pioneering work of Turing. Recently, promising microscopic approaches, such as the cellular dynamics method, have emerged. They have shown that Dictyostelium is useful as a model system in biology, The synchronization mechanism of oscillatory production of cyclic adenosine 3',5'-monophosphate in Dictyostelium is discussed in detail to show how it is a universal feature that can explain synchronization in other organisms.  相似文献   

14.
Administration of 100 and 200 microg/ml of cisplatin [cis -diammine dichloro platinum (II)] for 1 h to growing Dictyostelium discoideum cells severely affects folic acid chemotaxis and phagocytotic function in this organism. Following cisplatin treatment, cells show a much lower uptake of FITC labelled bacteria and a reduced plaque forming ability when plated on Eschericia coli seeded normal agar. Folic acid chemotaxis and folate deaminase activity are greatly inhibited in cisplatin-treated Dictyostelium cells. SDS-PAGE analysis shows a greater association of actin and myosin with the cell cortex of treated cells. These results have been discussed in relation to cisplatin's known ability to raise the levels of cytosolic calcium.  相似文献   

15.
During stimulation of Dictyostelium discoideum amoebae with the chemoattractant cAMP, extracellular calcium is taken up by the cells. The aim of this study was to determine the cytosolic free calcium concentration ([Ca++]i) during chemotaxis of Dictyostelium cells. In contrast to most vertebrate cells, three major drawbacks were encountered: 1) the indicator fura-2 could not be introduced into the cells by incubation with the ester form, 2) once loaded, the dye was rapidly sequestered into vesicles, 3) the organic anion transport blocker probenecid was not suitable to block sequestration. These problems were met by introducing the indicator into the cells with the scrape-loading technique adapted for use with Dictyostelium and the construction of a new fura-2 derivative, fura-2-dextran. Scrape-loading of Dictyostelium yielded up to 40% of labeled, vital cells. Fura-2-dextran fulfilled the following criteria: 1) it remained homogeneously distributed in the cytoplasm of motile Dictyostelium cells, 2) it retained the fluorescence intensity of fura-2 and the affinity for calcium binding, 3) it was very well suitable to demonstrate changes of [Ca++]i in serum-stimulated fibroblasts. [Ca++]i-measurements with fura-2-dextran in chemotactically active D. discoideum amoebae revealed that the large decrease in the extracellular calcium concentration is not accompanied by an overall change in [Ca++]i. Chemotaxis in this organism occurs in the absence of global changes in [Ca++]i. However, we cannot exclude either short-lived or local changes just beneath the plasma membrane.  相似文献   

16.
17.
18.
Thioredoxins (Trx) are ubiquitous dicysteine proteins capable of modulating enzymes and other cellular targets through specific disulfide-dithiol redox changes. They are unique in that a large number of very diverse metabolic systems are addressed and redox-regulated in bacteria, animal, and plant cells, but the finite number of thioredoxin interaction partners is still unknown. Two-hybrid methodology should provide a rational way to establish thioredoxin functions in a given organism. We report a search for physiological target proteins of thioredoxin1 in the social amoeba Dictyostelium discoideum , which possesses three developmentally regulated thioredoxin genes, all of which lack functional characterisation. A two-hybrid approach identified at least seven bona fide thioredoxin partners, including oxidoreductases, proteins of the ribosomal translation apparatus, and the cytoskeletal protein filopodin. With the exception of ribonucleotide reductase, none of these systems had previously been linked to specific redox modulation. Molecular interactions in two of the new thioredoxin/target protein couples were verified by biochemical studies: (1) thioredoxin1 and the abundant elongation factor 1alpha from D. discoideum form the mixed heterodisulfide characteristic of the thioredoxin mechanism of action; and (2) reduced thioredoxin, but not glutathione, strongly inhibits yeast alcohol dehydrogenase catalysis of ethanol oxidation.  相似文献   

19.
Huntingtin is a large HEAT repeat protein first identified in humans, where a polyglutamine tract expansion near the amino terminus causes a gain-of-function mechanism that leads to selective neuronal loss in Huntington's disease (HD). Genetic evidence in humans and knock-in mouse models suggests that this gain-of-function involves an increase or deregulation of some aspect of huntingtin's normal function(s), which remains poorly understood. As huntingtin shows evolutionary conservation, a powerful approach to discovering its normal biochemical role(s) is to study the effects caused by its deficiency in a model organism with a short life-cycle that comprises both cellular and multicellular developmental stages. To facilitate studies aimed at detailed knowledge of huntingtin's normal function(s), we generated a null mutant of hd, the HD ortholog in Dictyostelium discoideum. Dictyostelium cells lacking endogenous huntingtin were viable but during development did not exhibit the typical polarized morphology of Dictyostelium cells, streamed poorly to form aggregates by accretion rather than chemotaxis, showed disorganized F-actin staining, exhibited extreme sensitivity to hypoosmotic stress, and failed to form EDTA-resistant cell-cell contacts. Surprisingly, chemotactic streaming could be rescued in the presence of the bivalent cations Ca(2+) or Mg(2+) but not pulses of cAMP. Although hd(-) cells completed development, it was delayed and proceeded asynchronously, producing small fruiting bodies with round, defective spores that germinated spontaneously within a glassy sorus. When developed as chimeras with wild-type cells, hd(-) cells failed to populate the pre-spore region of the slug. In Dictyostelium, huntingtin deficiency is compatible with survival of the organism but renders cells sensitive to low osmolarity, which produces pleiotropic cell autonomous defects that affect cAMP signaling and as a consequence development. Thus, Dictyostelium provides a novel haploid organism model for genetic, cell biological, and biochemical studies to delineate the functions of the HD protein.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号