首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
Both Batesian and Müllerian mimicries are considered classical evidence of natural selection where predation pressure has, at times, created a striking similarity between unrelated prey species. Batesian mimicry, in which palatable mimics resemble unpalatable aposematic species, is parasitic and only beneficial to the mimics. By contrast, in classical Müllerian mimicry the cost of predators' avoidance learning is shared between similar unpalatable co-mimics, and therefore mimicry benefits all parties. Recent studies using mathematical modeling have questioned the dynamics of Müllerian mimicry, suggesting that fitness benefits should be calculated in a way similar to Batesian mimicry; that is, according to the relative unpalatability difference between co-mimics. Batesian mimicry is very sensitive to the availability of alternative prey, but the effects of alternative prey for Müllerian dynamics are not known and experiments are rare. We designed two experiments to test the effect of alternative prey on imperfect Batesian and Müllerian mimicry complexes. When alternative prey were scarce, imperfect Batesian mimics were selected out from the population, but abundantly available alternative prey relaxed selection against imperfect mimics. Birds learned to avoid both Müllerian models and mimics irrespective of the availability of alternative prey. However, the rate of avoidance learning of models increased when alternative prey were abundant. This experiment suggests that the availability of alternative prey affects the dynamics of both Müllerian and Batesian mimicry, but in different ways.  相似文献   

2.
Classical (conventional) Müllerian mimicry theory predicts that two (or more) defended prey sharing the same signal always benefit each other despite the fact that one species can be more toxic than the other. The quasi‐Batesian (unconventional) mimicry theory, instead, predicts that the less defended partner of the mimetic relationship may act as a parasite of the signal, causing a fitness loss to the model. Here we clarify the conditions for parasitic or mutualistic relationships between aposematic prey, and build a model to examine the hypothesis that the availability of alternative prey is crucial to Müllerian and quasi‐Batesian mimicry. Our model is based on optimal behaviour of the predator. We ask if and when it is in the interest of the predator to learn to avoid certain species as prey when there is alternative (cryptic) prey available. Our model clearly shows that the role of alternative prey must be taken into consideration when studying model–mimic dynamics. When food is scarce it pays for the predator to test the models and mimics, whereas if food is abundant predators should leave the mimics and models untouched even if the mimics are quite edible. Dynamics of the mimicry tend to be classically Müllerian if mimics are well defended, while quasi‐Batesian dynamics are more likely when they are relatively edible. However, there is significant overlap: in extreme cases mimics can be harmful to models (a quasi‐Batesian case) even if the species are equally toxic. A crucial parameter explaining this overlap is the search efficiency with which indiscriminating vs. discriminating predators find cryptic prey. Quasi‐Batesian mimicry becomes much more likely if discrimination increases the efficiency with which the specialized predator finds cryptic prey, while the opposite case tends to predict Müllerian mimicry. Our model shows that both mutualistic and parasitic relationship between model and mimic are possible and the availability of alternative prey can easily alter this relationship.  相似文献   

3.
Müllerian mimicry, where two unpalatable species share a warning pattern, is classically believed to be a form of mutualism, where the species involved share the cost of predator education. The evolutionary dynamics of Müllerian mimicry have recently become a controversial subject, after mathematical models have shown that if minor alterations are made to assumptions about the way in which predators learn and forget about unpalatable prey, this textbook case of mutualism may not be mutualistic at all. An underlying assumption of these models is that Müllerian mimics possess the same defence chemical. However, some Müllerian mimics are known to possess different defence chemicals. Using domestic chicks as predators and coloured crumbs flavoured with either the same or different unpalatable chemicals as prey, we provide evidence that two defence chemicals can interact to enhance predator learning and memory. This indicates that Müllerian mimics that possess different defence chemicals are better protected than those that share a single defence chemical. These data provide insight into how multiple defence chemicals are perceived by birds,and how they influence the way birds learn and remember warningly coloured prey. They highlight the importance of considering how different toxins in mimicry rings can interact in the evolution and maintenance of Müllerian mimicry and could help to explain the remarkable variation in chemical defences found within and between species.  相似文献   

4.
During the past thirty years, natural selection due to predation has been investigated with regard to prey motion in three areas that are relevant to the evolution of mimicry: (1) anti-apostatic selection, (2) locomotor mimicry, and (3) escape mimicry. Anti-apostatic selection, or selection against the odd individuals, arises when prey are at very high densities or when prey are Müllerian mimics. When prey are at high densities, motion of the prey increases selection against odd individuals. When the prey are Müllerian mimics, motion may also play an important role in strengthening selection against odd individuals. This may explain locomotor mimicry between Müllerian mimics. Locomotor mimicry arises when two distantly-related prey species appear alike in behaviour, and there is a corresponding suite of morphological, physiological, and biomechanical traits that the prey have in common. Locomotor mimicry has been demonstrated in Müllerian mimics. It is also predicted to occur in Batesian mimics but with important limitations due to selection by the predator for the prey to maintain the ability to escape if detected. Locomotor mimicry may also occur between palatable species that are alike as a result of unprofitable prey (or escape) mimicry. Escape mimicry arises when prey are difficult to capture. By frustration learning, the predator associates the colour of the prey with unprofitability. In all three instances, dis-similarity in colour or motion probably increases selection against the odd individual. In addition, the interaction of colour and motion gives rise to greater reliability of the signals to a specialist predator. However for a generalist predator, multiple component signals of the prey lead to errors in signal perception and greater risk of cheating. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

5.
Batesian and Müllerian mimicry relationships differ greatly in terms of selective pressures affecting the participants; hence, accurately characterizing a mimetic interaction is a crucial prerequisite to understanding the selective milieux of model, mimic, and predator. Florida viceroy butterflies (Limenitis archippus floridensis) are conventionally characterized as palatable Batesian mimics of distasteful Florida queens (Danaus gilippus berenice). However, recent experiments indicate that both butterflies are moderately distasteful, suggesting they may be Müllerian comimics. To directly test whether the butterflies exemplify Müllerian mimicry, I performed two reciprocal experiments using red-winged blackbird predators. In Experiment 1, each of eight birds was exposed to a series of eight queens as “models,” then offered four choice trials involving a viceroy (the putative “mimic”) versus a novel alternative butterfly. If mimicry was effective, viceroys should be attacked less than alternatives. I also compared the birds' reactions to solo viceroy “mimics” offered before and after queen models, hypothesizing that attack rate on the viceroy would decrease after birds had been exposed to queen models. In Experiment 2, 12 birds were tested with viceroys as models and queens as putative mimics. The experiments revealed that (1) viceroys and queens offered as models were both moderately unpalatable (only 16% entirely eaten), (2) some birds apparently developed conditioned aversions to viceroy or queen models after only eight exposures, (3) in the subsequent choice trials, viceroy and queen “mimics” were attacked significantly less than alternatives, and (4) solo postmodel mimics were attacked significantly less than solo premodel mimics. Therefore, under these experimental conditions, sampled Florida viceroys and queens are comimics and exemplify Müllerian, not Batesian, mimicry. This compels a reassessment of selective forces affecting the butterflies and their predators, and sets the stage for a broader empirical investigation of the ecological and evolutionary dynamics of mimicry.  相似文献   

6.
Biological mimicry has served as a salient example of natural selection for over a century, providing us with a dazzling array of very different examples across many unrelated taxa. We provide a conceptual framework that brings together apparently disparate examples of mimicry in a single model for the purpose of comparing how natural selection affects models, mimics and signal receivers across different interactions. We first analyse how model–mimic resemblance likely affects the fitness of models, mimics and receivers across diverse examples. These include classic Batesian and Müllerian butterfly systems, nectarless orchids that mimic Hymenoptera or nectar‐producing plants, caterpillars that mimic inert objects unlikely to be perceived as food, plants that mimic abiotic objects like carrion or dung and aggressive mimicry where predators mimic food items of their own prey. From this, we construct a conceptual framework of the selective forces that form the basis of all mimetic interactions. These interactions between models, mimics and receivers may follow four possible evolutionary pathways in terms of the direction of selection resulting from model–mimic resemblance. Two of these pathways correspond to the selective pressures associated with what is widely regarded as Batesian and Müllerian mimicry. The other two pathways suggest mimetic interactions underpinned by distinct selective pressures that have largely remained unrecognized. Each pathway is characterized by theoretical differences in how model–mimic resemblance influences the direction of selection acting on mimics, models and signal receivers, and the potential for consequent (co)evolutionary relationships between these three protagonists. The final part of this review describes how selective forces generated through model–mimic resemblance can be opposed by the basic ecology of interacting organisms and how those forces may affect the symmetry, strength and likelihood of (co)evolution between the three protagonists within the confines of the four broad evolutionary possibilities. We provide a clear and pragmatic visualization of selection pressures that portrays how different mimicry types may evolve. This conceptual framework provides clarity on how different selective forces acting on mimics, models and receivers are likely to interact and ultimately shape the evolutionary pathways taken by mimetic interactions, as well as the constraints inherent within these interactions.  相似文献   

7.
Mimicry has been examined in field and laboratory studies of butterflies and its evolutionary dynamics have been explored in computer simulations. Phylogenetic studies examining the evolution of mimicry, however, are rare. Here, the phylogeny of wasp-mimicking tiger moths, the Sphecosoma group, was used to test evolutionary predictions of computer simulations of conventional Müllerian mimicry and quasi-Batesian mimicry dynamics. We examined whether mimetic traits evolved individually, or as suites of characters, using concentrated change tests. The phylogeny of these moth mimics revealed that individual mimetic characters were conserved, as are the three mimetic wasp forms: yellow Polybia, black Polybia and Parachartergus mimetic types. This finding was consistent with a 'supergene' control of linked loci and the Nicholson two-step model of mimicry evolution. We also used a modified permutation-tail probability approach to examine the rate of mimetic-type evolution. The observed topology, hypothetical Müllerian and Batesian scenarios, and 1000 random trees were compared using Kishino-Hasegawa tests. The observed phylogeny was more consistent with the predicted Müllerian distribution of mimetic traits than with that of a quasi-Batesian scenario. We suggest that the range of discriminatory abilities of the predator community plays a key role in shaping mimicry dynamics.  相似文献   

8.
True mimicry is an extremely rare phenomenon in cockroaches, with beetles as their favorite models. So far, only very few Pseudophyllodromiinae could be identified that conform to all requirements for Batesian mimicry and similarly exist only isolated reports on Müllerian mimicry. The vast majority, however, of the so‐called beetle‐mimicking cockroaches only shows a high degree of generalized convergence regarding their outer appearance. Specific models or counterparts, respectively, are lacking. Here we report on a last instar nymph of an undescribed Blattinae (Blattodea: Blattidae) that accurately mimics a truly harmful, sympatric carabid beetle. Although no indications for inedibility of this cockroach became evident, thus making Batesian mimicry likely, Müllerian mimicry can not be excluded with certainty. At any rate, this represents both the first case of mimicry in Blattidae and the first case with a ground beetle (Carabidae) as model for a cockroach mimic.  相似文献   

9.
Müllerian mimicry, where unpalatable prey share common warning patterns, has long fascinated evolutionary biologists. It is commonly assumed that Müllerian mimics benefit by sharing the costs of predator education, thus reducing per capita mortality, although there has been no direct test of this assumption. Here, we specifically measure the selection pressure exerted by avian predators on unpalatable prey with different degrees of visual similarity in their warning patterns. Using wild-caught birds foraging on novel patterned prey in the laboratory, we unexpectedly found that pattern similarity did not increase the speed of avoidance learning, and even dissimilar mimics shared the education of naive predators. This was a consistent finding across two different densities of unpalatable prey, although mortalities were lower at the higher density as expected. Interestingly, the mortalities of Müllerian mimics were affected by pattern similarity in the predicted way by the end of our experiment, although the result was not quite significant. This suggests that the benefits to Müllerian mimics may emerge only later in the learning process, and that predator experience of the patterns may affect the degree to which pattern similarity is important. This highlights the need to measure the behaviour of real predators if we are to understand fully the evolution of mimicry systems.  相似文献   

10.
Mimicry is one of the oldest concepts in biology, but it still presents many puzzles and continues to be widely debated. Simulation of wasps with a yellow‐black abdominal pattern by other insects (commonly called “wasp mimicry”) is traditionally considered a case of resemblance of unprofitable by profitable prey causing educated predators to avoid models and mimics to the advantage of both (Figure 1a). However, as wasps themselves are predators of insects, wasp mimicry can also be seen as a case of resemblance to one's own potential antagonist. We here propose an additional hypothesis to Batesian and Müllerian mimicry (both typically involving selection by learning vertebrate predators; cf. Table 1) that reflects another possible scenario for the evolution of multifold and in particular very accurate resemblances to wasps: an innate, visual inhibition of aggression among look‐alike wasps, based on their social organization and high abundance. We argue that wasp species resembling each other need not only be Müllerian mutualists and that other insects resembling wasps need not only be Batesian mimics, but an innate ability of wasps to recognize each other during hunting is the driver in the evolution of a distinct kind of masquerade, in which model, mimic, and selecting agent belong to one or several species (Figure  1b). Wasp mimics resemble wasps not (only) to be mistaken by educated predators but rather, or in addition, to escape attack from their wasp models. Within a given ecosystem, there will be selection pressures leading to masquerade driven by wasps and/or to mimicry driven by other predators that have to learn to avoid them. Different pressures by guilds of these two types of selective agents could explain the widely differing fidelity with respect to the models in assemblages of yellow jackets and yellow jacket look‐alikes.  相似文献   

11.
Müllerian mimicry, in which both partners are unpalatable to predators, is often used as an example of a coevolved mutualism. However, it is theoretically possible that some Müllerian mimics are parasitic if a weakly defended mimic benefits at the expense of a more highly defended model, a phenomenon known as ‘quasi-Batesian mimicry’. The theory expounded by Müller and extended here for unequal unpalatability, on the other hand, suggests that quasi-Batesian mimicry should be rare in comparison with classical, or mutualistic Müllerian mimicry. Evolutionarily, quasi-Batesian mimicry has consequences similar to classical Batesian mimicry, including unilateral ‘advergence’ of the mimic to the model, and diversifying frequency-dependent selection on the mimic which may lead to mimetic polymorphism. In this paper, theory and empirical evidence for mutual benefit and coevolution in Müllerian mimicry are reviewed. I use examples from well-known insect Müllerian mimicry complexes: the Limenitis–Danaus (Nymphalidae) system in North America, the Bombus–Psithyrus (Apidae) system in the north temperate zone, and the Heliconius–Laparus (Nymphalidae) system in tropical America. These give abundant evidence for unilateral advergence, and no convincing evidence, to my knowledge, for coevolved mutual convergence. Furthermore, mimetic polymorphisms are not uncommon. Yet classical mutualistic Müllerian mimicry, coupled with spatial (and possibly temporal) variation in model abundances convincingly explain these apparent anomalies without recourse to a quasi-Batesian explanation. Nevertheless, the case against classical Müllerian mimicry is not totally disproved, and should be investigated further. I hope that this tentative analysis of actual mimicry rings may encourage others to look for evidence of coevolution and quasi-Batesian effects in a variety of other Müllerian mimicry systems. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

12.
Batesian mimics can parasitize Müllerian mimicry rings mimicking the warning color signal. The evolutionary success of Batesian mimics can increase adding complexity to the signal by behavioral and locomotor mimicry. We investigated three fundamental morphological and locomotor traits in a Neotropical mimicry ring based on Ithomiini butterflies and parasitized by Polythoridae damselflies: wing color, wing shape, and flight style. The study species have wings with a subapical white patch, considered the aposematic signal, and a more apical black patch. The main predators are VS‐birds, visually more sensitive to violet than to ultraviolet wavelengths (UVS‐birds). The white patches, compared to the black patches, were closer in the bird color space, with higher overlap for VS‐birds than for UVS‐birds. Using a discriminability index for bird vision, the white patches were more similar between the mimics and the model than the black patches. The wing shape of the mimics was closer to the model in the morphospace, compared to other outgroup damselflies. The wing‐beat frequency was similar among mimics and the model, and different from another outgroup damselfly. Multitrait aposematic signals involving morphology and locomotion may favor the evolution of mimicry rings and the success of Batesian mimics by improving signal effectiveness toward predators.  相似文献   

13.
Many hoverflies (Syrphidae) mimic wasps or bees through colour or behavioural adaptations. The relationship between phenotypic variation in colour pattern and mimetic perfection (as determined by pigeons) was investigated in three species of Müllerian mimics (Vespula spp.) and 10 Batesian hoverfly mimics, plus two non-mimetic species of flies. Four predictions were tested: (i) Batesian mimics might be imperfect because they are in the process of evolving towards perfection, hence there should be a positive relationship between variation and imperfection; (ii) some Batesian mimics are imperfect because they do not have the appropriate genetic variation to improve and have evolved to be as good as possible, hence there should be no differences between species, all displaying a low level of variation; (iii) very common hoverflies should show the highest levels of variation because they outnumber their models, resulting in high predation and a breakdown in the mimetic relationship; and (iv) social wasps (Vespula) have such a powerful defence that anything resembling a wasp, both Müllerian and perfect Batesian mimics, would be avoided, resulting in relaxed selection and high variance. Poor mimics may still evolve to resemble wasps as well as possible and display lower levels of variation. The data only provided support for the fourth prediction. The Müllerian mimics, one of the most perfect Batesian mimics, and the non-mimetic flies displayed much higher levels of variation than the other species of Batesian mimics.  相似文献   

14.
Species richness varies among clades, yet the drivers of diversification creating this variation remain poorly understood. While abiotic factors likely drive some of the variation in species richness, ecological interactions may also contribute. Here, we examine one class of potential contributors to species richness variation that is particularly poorly understood: mutualistic interactions. We aim to elucidate large‐scale patterns of diversification mediated by mutualistic interactions using a spatially explicit population‐based model. We focus on mutualistic Müllerian mimicry between conspicuous toxic prey species, where convergence in color patterns emerges from predators' learning process. To investigate the effects of Müllerian mimicry on species diversification, we assume that some speciation events stem from shifts in ecological niches, and can also be associated with shift in mimetic color pattern. Through the emergence of spatial mosaics of mimetic color patterns, Müllerian mimicry constrains the geographical distribution of species and allows different species occupying similar ecological niches to exist simultaneously in different regions. Müllerian mimicry and the resulting spatial segregation of mimetic color patterns thus generate more balanced phylogenetic trees and increase overall species diversity. Our study sheds light on complex effects of Müllerian mimicry on ecological, spatial, and phylogenetic diversification.  相似文献   

15.
Batesian mimicry is the resemblance between unpalatable models and palatable mimics. The widely accepted idea is that the frequency and the unprofitability of the model are crucial for the introduction of a Batesian mimic into the prey population. However, experimental evidence is limited and furthermore, previous studies have considered mainly perfect mimicry (automimicry). We investigated imperfect Batesian mimicry by varying the frequency of an aposematic model at two levels of distastefulness. The predator encountered prey in a random order, one prey item at a time. The prey were thus presented realistically in a sequential way. Great tits (Parus major) were used as predators. This experiment, with a novel signal, supports the idea that Batesian mimics gain most when the models outnumber them. The mortalities of the mimics as well as the models were significantly dependent on the frequency of the model. Both prey types survived better the fewer mimics there were confusing the predator. There were also indications that the degree of distastefulness of the model had an effect on the survival of the Batesian mimic: the models survived significantly better the more distasteful they were. The experiment supports the most classical predictions in the theories of the origin and maintenance of Batesian mimicry.  相似文献   

16.
Many bees and stinging wasps, or aculeates, exhibit striking colour patterns or conspicuous coloration, such as black and yellow stripes. Such coloration is often interpreted as an aposematic signal advertising aculeate defences: the venomous sting. Aposematism can lead to Müllerian mimicry, the convergence of signals among different species unpalatable to predators. Müllerian mimicry has been extensively studied, notably on Neotropical butterflies and poison frogs. However, although a very high number of aculeate species harbour putative aposematic signals, aculeates are under-represented in mimicry studies. Here, we review the literature on mimicry rings that include bee and stinging wasp species. We report over a hundred described mimicry rings, involving a thousand species that belong to 19 aculeate families. These mimicry rings are found all throughout the world. Most importantly, we identify remaining knowledge gaps and unanswered questions related to the study of Müllerian mimicry in aculeates. Some of these questions are specific to aculeate models, such as the impact of sociality and of sexual dimorphism in defence levels on mimicry dynamics. Our review shows that aculeates may be one of the most diverse groups of organisms engaging in Müllerian mimicry and that the diversity of aculeate Müllerian mimetic interactions is currently under-explored. Thus, aculeates represent a new and major model system to study the evolution of Müllerian mimicry. Finally, aculeates are important pollinators and the global decline of pollinating insects raises considerable concern. In this context, a better understanding of the impact of Müllerian mimicry on aculeate communities may help design strategies for pollinator conservation, thereby providing future directions for evolutionary research.  相似文献   

17.
Although contemporary models of Müllerian mimicry have considered the movement of interfacial boundaries between two distinct mimetic forms, and even the possibility of polymorphisms in two patch systems, no model has considered how multiple forms of Müllerian mimics might evolve and be maintained over large geographical areas. A spatially explicit individual-based model for the evolution of Müllerian mimicry is presented, in which two unpalatable species are distributed over discrete cells within a regular lattice. Populations in each cell are capable of genetic drift and experience localized dispersal as well as frequency-dependent selection by predators. When each unpalatable prey species was introduced into a random cell and allowed to spread, then mimicry evolved throughout the system in the form of a spatial mosaic of phenotypes, separated by narrow "hybrid zones". The primary mechanism generating phenotypic diversity was the occasional establishment of new mutant forms in unoccupied cells and their subsequent maintenance (and spread) through frequency-dependent selection. The mean number of discrete clusters of the same morph that formed in the lattice was higher the higher the intensity of predation, and higher the lower the dispersal rate of unpalatable prey. Under certain conditions the hybrid zones moved, in a direction dependent on the curvature of their interfacial boundaries. However, the mimetic mosaics were highly stable when the intensity of predation was high and the rate of prey dispersal was low. Overall, this model highlights how a stable mosaic of different mimetic forms can evolve from a range of starting conditions through a combination of chance effects and localized frequency-dependent selection.  相似文献   

18.
Predation risk is allegedly reduced in Batesian and Müllerian mimics, because their coloration resembles the conspicuous coloration of unpalatable prey. The efficacy of mimicry is thought to be affected by variation in the unpalatability of prey, the conspicuousness of the signals, and the visual system of predators that see them. Many frog species exhibit small colorful patches contrasting against an otherwise dark body. By measuring toxicity and color reflectance in a geographically variable frog species and the syntopic toxic species, we tested whether unpalatability was correlated with between‐species color resemblance and whether resemblance was highest for the most conspicuous components of coloration pattern. Heterospecific resemblance in colorful patches was highest between species at the same locality, but unrelated to concomitant variation in toxicity. Surprisingly, resemblance was lower for the conspicuous femoral patches compared to the inconspicuous dorsum. By building visual models, we further tested whether resemblance was affected by the visual system of model predators. As predicted, mimic‐model resemblance was higher under the visual system of simulated predators compared to no visual system at all. Our results indicate that femoral patches are aposematic signals and support a role of mimicry in driving phenotypic divergence or mimetic radiation between localities.  相似文献   

19.
Irrespective of the selective advantage deriving from similar color pattern, the evolution of Batesian (and Müllerian) mimicry between distantly related insects groups has been perhaps facilitated by the availability to both models and mimics of similar pattern units more likely to be expressed, and to be modified in parallel ways, due to shared developmental constraints. We explore this hypothesis in a comparison of units of black-and-yellow color patterns between wasps (Vespidae) and those syrphids (Syrphidae) that are considered to be their Batesian mimics. As a proxy for evolvability we analyzed the co-occurrence of multiple color pattern within species (either as serial homologues or as expression of intraspecific variation) in 203 species of syrphids and 127 species of wasps. In both the wasps and the syrphids, the most frequent black-and-yellow patterns on the abdomen—all shared between the two insect groups—are also the most extensively linked in the networks of intraspecific co-occurrence, but are not the same in the two insect groups: in accordance with our hypothesis, this suggests positively biased evolvability.  相似文献   

20.
The possibility that escape or evasive mimicry evolved in butterflies and other prey insects in a similar fashion to classical Batesian and Müllerian mimicry has long been advanced in the literature. However, there is a general disagreement among lepidopterists and evolutionary biologists on whether or not escape mimicry exists, as well as in which mimicry rings this form of mimicry has evolved. Here, we review some purported cases of escape mimicry in Neotropical butterflies and suggest new mimicry rings involving several species of Archaeoprepona, Prepona, and Doxocopa (the “bright blue bands” ring) and species of Colobura and Hypna (the “creamy bands” ring) where the palatability of butterflies, their ability to escape predator attacks, geographic distribution, relative abundance, and co-occurrence in the same habitats strongly suggest that escape mimicry is involved. In addition, we also indicate other butterfly taxa whose similarities of coloration patterns could be due to escape mimicry and would constitute important case studies for future investigation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号