首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Ayton GS  Blood PD  Voth GA 《Biophysical journal》2007,92(10):3595-3602
Liposome remodeling processes (e.g., vesiculation and tubulation) due to N-BAR domain interactions with the lipid bilayer are explored with a multi-scale simulation approach. Results from atomistic-level molecular dynamics simulations of membrane binding to the concave face of N-BAR domains are used along with discretized mesoscopic field-theoretic simulations to examine how the spontaneous curvature fields generated by N-BAR domains result in membrane remodeling. It is found that tubulation can be generated by anisotropic N-BAR spontaneous curvature fields, whereas vesiculation is only observed with isotropic N-BAR spontaneous curvature fields at high density. The results of the multi-scale simulations provide insight into recent experimental observations.  相似文献   

4.
Isothermal titration calorimetry is able to provide accurate information on the thermodynamic contributions of enthalpy and entropy changes to free energies of binding. The Structure/Calorimetry of Reported Protein Interactions Online database of published isothermal titration calorimetry studies and structural information on the interactions between proteins and small-molecule ligands is used here to reveal general thermodynamic properties of protein-ligand interactions and to investigate correlations with changes in solvation. The overwhelming majority of interactions are found to be enthalpically favoured. Synthetic inhibitors and biological ligands form two distinct subpopulations in the data, with the former having greater average affinity due to more favourable entropy changes on binding. The greatest correlation is found between the binding free energy and apolar surface burial upon complex formation. However, the free-energy contribution per unit area buried is only 30-50% of that expected from earlier studies of transfer free energies of small molecules. A simple probability-based estimator for the maximal affinity of a binding site in terms of its apolar surface area is proposed. Polar surface area burial also contributes substantially to affinity but is difficult to express in terms of unit area due to the small variation in the amount of polar surface buried and a tendency for cancellation of its enthalpic and entropic contributions. Conventionally, the contribution of apolar desolvation to affinity is attributed to gain of entropy due to solvent release. Although data presented here are supportive of this notion, because the correlation of entropy change with apolar surface burial is relatively weak, it cannot, on present evidence, be confidently considered to be correct. Further, thermodynamic changes arising from small differences between ligands binding to individual proteins are relatively large and, in general, uncorrelated with changes in solvation, suggesting that trends identified across widely differing proteins are of limited use in explaining or predicting the effects of ligand modifications.  相似文献   

5.
6.
By the method of stimulation electromyography, functional changes in the segmental system and skeletal muscles of the lower limbs of 16 persons (18-to 22-year-old men) were determined for 15 min after various massage techniques. Different massage techniques were clearly shown to differ in their effects on neuromuscular system parameters. Among the massage aftereffects were a rapid effect and a delayed influence of individual techniques.  相似文献   

7.
Toogood HS  Leys D  Scrutton NS 《The FEBS journal》2007,274(21):5481-5504
Electron transferring flavoproteins (ETFs) are soluble heterodimeric FAD-containing proteins that function primarily as soluble electron carriers between various flavoprotein dehydrogenases. ETF is positioned at a key metabolic branch point, responsible for transferring electrons from up to 10 primary dehydrogenases to the membrane-bound respiratory chain. Clinical mutations of ETF result in the often fatal disease glutaric aciduria type II. Structural and biophysical studies of ETF in complex with partner proteins have shown that ETF partitions the functions of partner binding and electron transfer between (a) a 'recognition loop', which acts as a static anchor at the ETF-partner interface, and (b) a highly mobile redox-active FAD domain. Together, this enables the FAD domain of ETF to sample a range of conformations, some compatible with fast interprotein electron transfer. This 'conformational sampling' enables ETF to recognize structurally distinct partners, whilst also maintaining a degree of specificity. Complex formation triggers mobility of the FAD domain, an 'induced disorder' mechanism contrasting with the more generally accepted models of protein-protein interaction by induced fit mechanisms. We discuss the implications of the highly dynamic nature of ETFs in biological interprotein electron transfer. ETF complexes point to mechanisms of electron transfer in which 'dynamics drive function', a feature that is probably widespread in biology given the modular assembly and flexible nature of biological electron transfer systems.  相似文献   

8.
De novo designed beta-hairpin peptides have generally been recalcitrant to crystallization. The crystal structures of four synthetic peptide beta-hairpins, Boc-Leu-Val-Val-DPro-Gly-Leu-Phe-Val-OMe (1), Boc-Leu-Phe-Val-DPro-Ala-Leu-Phe-Val-OMe (2), Boc-Leu-Val-Val-DPro-Aib-Leu-Val-Val-OMe (3), and Boc-Met-Leu-Phe-Val-DPro-Ala-Leu-Val-Val-Phe-OMe (4), are described. The centrally positioned DPro-Xxx segment promotes prime beta-turn formation, thereby nucleating beta-hairpin structures. In all four peptides well-defined beta-hairpins nucleated by central type II' DPro-Xxx beta-turns have been characterized by X-ray diffraction, providing a view of eight crystallographically independent hairpins. In peptides 1-3 three intramolecular cross-strand hydrogen bonds stabilized the observed beta-hairpin, with some fraying of the structures at the termini. In peptide 4, four intramolecular cross-strand hydrogen bonds stabilized the hairpin. Peptides 1-4 reveal common features of packing of beta-hairpins into crystals. Two-dimensional sheet formation mediated by intermolecular hydrogen bonds formed between antiparallel strands of adjacent molecule is a recurrent theme. The packing of two-dimensional sheets into the crystals is mediated in the third dimension by bridging solvents and interactions of projecting side chains, which are oriented on either face of the sheet. In all cases, solvation of the central DPro-Xxx peptide unit beta-turn is observed. The hairpins formed in the octapeptides are significantly buckled as compared to the larger hairpin in peptide 4, which is much flatter. The crystal structures provide insights into the possible modes of beta-sheet packing in regular crystalline arrays, which may provide a starting point for understanding beta-sandwich and cross-beta-structures in amyloid fibrils.  相似文献   

9.
10.
The stability and (un)folding of the 19-residue peptide, SCVTLYQSWRYSQADNGCA, corresponding to the first beta-hairpin (residues 10 to 28) of the alpha-amylase inhibitor tendamistat (PDB entry 3AIT) has been studied by molecular dynamics simulations in explicit water under periodic boundary conditions at several temperatures (300 K, 360 K and 400 K), starting from various conformations for simulation lengths, ranging from 10 to 30 ns. Comparison of trajectories of the reduced and oxidized native peptides reveals the importance of the disulphide bridge closing the beta-hairpin in maintaining a proper turn conformation, thereby insuring a proper side-chain arrangement of the conserved turn residues. This allows rationalization of the conservation of those cysteine residues among the family of alpha-amylase inhibitors. High temperature simulations starting from widely different initial configurations (native beta-hairpin, alpha and left-handed helical and extended conformations) begin sampling similar regions of the conformational space within tens of nanoseconds, and both native and non-native beta-hairpin conformations are recovered. Transitions between conformational clusters are accompanied by an increase in energy fluctuations, which is consistent with the increase in heat capacity measured experimentally upon protein folding. The folding events observed in the various simulations support a model for beta-hairpin formation in which the turn is formed first, followed by hydrogen bond formation closing the hairpin, and subsequent stabilization by side-chain hydrophobic interactions.  相似文献   

11.
Recent studies in human cells and in the yeast Yarrowia lipolytica have shown that peroxisomes consist of numerous structurally distinct subcompartments that differ in their import competency for various proteins and are related through a time-ordered conversion of one subcompartment to another. Our studies have implicated the fusion of small peroxisomal precursors as an early event in the multistep assembly of peroxisomes operating in Y. lipolytica. Newly discovered unexpected roles for peroxisomes in specific developmental programs have expanded the remarkable plasticity of peroxisomal functions. Here, we highlight recent discoveries on the highly dynamic nature of peroxisome assembly and function and suggest questions for future research in these areas.  相似文献   

12.
Little is known about the development of presynaptic specializations. Recent studies that visualize tagged synaptic components in cultured cells and in vivo have identified molecular participants and reveal common features in cellular processes of presynaptic assembly.  相似文献   

13.
14.
The role of electrostatic interactions in the assembly of a native protein structure was studied using fragment complementation. Contributions of salt, pH, or surface charges to the kinetics and equilibrium of calbindin D(9k) reconstitution was measured in the presence of Ca(2+) using surface plasmon resonance and isothermal titration calorimetry. Whereas surface charge substitutions primarily affect the dissociation rate constant, the association rates are correlated with subdomain net charge in a way expected for Coulomb interactions. The affinity is reduced in all mutants, with the largest effect (260-fold) observed for the double mutant K25E+K29E. At low net charge, detailed charge distribution is important, and charges remote from the partner EF-hand have less influence than close ones. The effects of salt and pH on the reconstitution are smaller than mutational effects. The interaction between the wild-type EF-hands occurs with high affinity (K(A) = 1.3 x 10(10) M(-1); K(D) = 80 pM). The enthalpy of association is overall favorable and there appears to be a very large favorable entropic contribution from the desolvation of hydrophobic surfaces that become buried in the complex. Electrostatic interactions contribute significantly to the affinity between the subdomains, but other factors, such as hydrophobic interactions, dominate.  相似文献   

15.
Huang X  Zhan CG 《Biophysical journal》2007,93(10):3627-3639
By performing homology modeling, molecular docking, and molecular dynamics simulations, we have developed three-dimensional (3D) structural models of both dopamine transporter and dopamine transporter-dopamine complex in the environment of lipid bilayer and solvent water. According to the simulated structure of dopamine transporter-dopamine complex, dopamine was orientated in a hydrophobic pocket at the midpoint of the membrane. The modeled 3D structures provide some detailed structural and mechanistic insights concerning how dopamine transporter (DAT) interacts with dopamine at atomic level, extending our mechanistic understanding of the dopamine reuptake with the help of Na(+) ions. The general features of the modeled 3D structures are consistent with available experimental data. Based on the modeled structures, our calculated binding free energy (DeltaG(bind) = -6.4 kcal/mol) for dopamine binding with DAT is also reasonably close to the experimentally derived DeltaG(bind) value of -7.4 kcal/mol. Finally, a possible dopamine-entry pathway, which involves formation and breaking of the salt bridge between side chains of Arg(85) and Asp(476), is proposed based on the results obtained from the modeling and molecular dynamics simulation. The new structural and mechanistic insights obtained from this computational study are expected to stimulate future, further biochemical and pharmacological studies on the detailed structures and mechanisms of DAT and other homologous transporters.  相似文献   

16.
Although the dynamic self-assembly behavior of microtubule ends has been well characterized at the spatial resolution of light microscopy (~200 nm), the single-molecule events that lead to these dynamics are less clear. Recently, a number of in vitro studies used novel approaches combining laser tweezers, microfabricated chambers, and high-resolution tracking of microtubule-bound beads to characterize mechanochemical aspects of MT dynamics at nanometer scale resolution. In addition, computational modeling is providing a framework for integrating these experimental results into physically plausible models of molecular scale microtubule dynamics. These nanoscale studies are providing new fundamental insights about microtubule assembly, and will be important for advancing our understanding of how microtubule dynamic instability is regulated in vivo via microtubule-associated proteins, therapeutic agents, and mechanical forces.  相似文献   

17.
Infectious HIV particles contain a characteristic cone-shaped core encasing the viral RNA and replication proteins. The core exhibits significant heterogeneity in size and shape, yet consistently forms a well-defined structure. The mechanism by which the core is assembled in the maturing virion remains poorly understood. Using cryo-electron tomography, we have produced three-dimensional reconstructions of authentic, unstained HIV-1. These reveal the viral morphology with unprecedented clarity and suggest the following mechanism for core formation inside the extracellular virion: core growth initiates at the narrow end of the cone and proceeds toward the distal side of the virion until limited by the viral membrane. Curvature and closure of the broad end of the core are then directed by the inner surface of the viral membrane. This mechanism accommodates significant flexibility in lattice growth while ensuring the closure of cores of variable size and shape.  相似文献   

18.
Striated muscle cells are characterised by a para-crystalline arrangement of their contractile proteins actin and myosin in sarcomeres, the basic unit of the myofibrils. A multitude of proteins is required to build and maintain the structure of this regular arrangement as well as to ensure regulation of contraction and to respond to alterations in demand. This review focuses on the actin filaments (also called thin filaments) of the sarcomere and will discuss how they are assembled during myofibrillogenesis and in hypertrophy and how their integrity is maintained in the working myocardium.  相似文献   

19.
Eukaryotic cytochrome c oxidase (COX) is the terminal enzyme of the mitochondrial respiratory chain. COX is a multimeric enzyme formed by subunits of dual genetic origin whose assembly is intricate and highly regulated. In addition to the structural subunits, a large number of accessory factors are required to build the holoenzyme. The function of these factors is required in all stages of the assembly process. They are relevant to human health because devastating human disorders have been associated with mutations in nuclear genes encoding conserved COX assembly factors. The study of yeast strains and human cell lines from patients carrying mutations in structural subunits and COX assembly factors has been invaluable to attain the current state of knowledge, even if still fragmentary, of the COX assembly process. After the identification of the genes involved, the isolation and characterization of genetic and metabolic suppressors of COX assembly defects, reviewed here, have become a profitable strategy to gain insight into their functions and the pathways in which they operate. Additionally, they have the potential to provide useful information for devising therapeutic approaches to combat human disorders associated with COX deficiency.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号