首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
The cortical motor system   总被引:31,自引:0,他引:31  
Rizzolatti G  Luppino G 《Neuron》2001,31(6):889-901
The cortical motor system of primates is formed by a mosaic of anatomically and functionally distinct areas. These areas are not only involved in motor functions, but also play a role in functions formerly attributed to higher order associative cortical areas. In the present review, we discuss three types of higher functions carried out by the motor cortical areas: sensory-motor transformations, action understanding, and decision processing regarding action execution. We submit that generating internal representations of actions is central to cortical motor function. External contingencies and motivational factors determine then whether these action representations are transformed into actual actions.  相似文献   

2.
Summation was studied by a procedure close to that used in producing a conditioned reflex. Subthreshold electrical stimulation, which gave rise to a dominant focus in the cat motor cortex, was applied after photic stimulation. Under these conditions, summation occurred both when the two stimuli were applied simultaneously and when the weaker stimulus preceded the stronger one by a very short interval (tens of milliseconds). Increased excitability was characteristic of the dominant focus. An excessive increase in excitability weakened the summation reflex. Electrographically, this type of conditioning was reflected in an increase in amplitude of the primary negative wave of the direct cortical response, recorded in the motor area at a distance of 2–3 mm from the stimulation point. It is concluded from analysis of this electrophysiological phenomenon and comparison of the results with data in the literature that different mechanisms are involved in the summation process during different sequences of stimulation ("photic+electrical" and "electrical+photic").Institute of Higher Nervous Activity and Neurophysiology, Academy of Sciences of the USSR, Moscow. Translated from Neirofiziologiya, Vol. 1, No. 3, pp. 293–302, November–December, 1969.  相似文献   

3.
To maintain optimal clarity of objects moving slowly in three dimensional space, frontal eyed-primates use both smooth-pursuit and vergence (depth) eye movements to track precisely those objects and maintain their images on the foveae of left and right eyes. The caudal parts of the frontal eye fields contain neurons that discharge during smooth-pursuit. Recent results have provided a new understanding of the roles of the frontal eye field pursuit area and suggest that it may control the gain of pursuit eye movements, code predictive visual signals that drive pursuit, and code commands for smooth eye movements in a three dimensional coordinate frame.  相似文献   

4.
Reward-guided decision-making and learning depends on distributed neural circuits with many components. Here we focus on recent evidence that suggests four frontal lobe regions make distinct contributions to reward-guided learning and decision-making: the lateral orbitofrontal cortex, the ventromedial prefrontal cortex and adjacent medial orbitofrontal cortex, anterior cingulate cortex, and the anterior lateral prefrontal cortex. We attempt to identify common themes in experiments with human participants and with animal models, which suggest roles that the areas play in learning about reward associations, selecting reward goals, choosing actions to obtain reward, and monitoring the potential value of switching to alternative courses of action.  相似文献   

5.
Grantham J  Lassing I  Karlsson R 《Protoplasma》2012,249(4):1001-1015
Actin is the essential force-generating component of the microfilament system, which powers numerous motile processes in eukaryotic cells and undergoes dynamic remodeling in response to different internal and external signaling. The ability of actin to polymerize into asymmetric filaments is the inherent property behind the site-directed force-generating capacity that operates during various intracellular movements and in surface protrusions. Not surprisingly, a broad variety of signaling pathways and components are involved in controlling and coordinating the activities of the actin microfilament system in a myriad of different interactions. The characterization of these processes has stimulated cell biologists for decades and has, as a consequence, resulted in a huge body of data. The purpose here is to present a cellular perspective on recent advances in our understanding of the microfilament system with respect to actin polymerization, filament structure and specific folding requirements.  相似文献   

6.
We studied the changes in amplitude of the first short latency positive potential (2.3 ± 0.3 msec, mean ± S.D.) of the direct cortical response (DCR) elicited by surface electrical stimulation of the motor cortex in anaesthetised baboons. Local cortical blood flow, measured by the hydrogen clearance method, was progressively reduced by acute middle cerebral artery occlusion and subsequent hypotension and was related to the amplitude of this potential. With flow levels greater than 25 ml/100 g/min the DCR was essentially unaffected, but it was lost with flows below 20 ml/100 g/min. These results indicate a threshold relationship between the generation of the electrical activity evoked in the cortical elements and local cortical flow, similar to that previously demonstrated for cortical somatosensory evoked potentials.  相似文献   

7.
We investigated the role of the cerebral cortex, particularly the face/tongue area of the primary sensorimotor (SMI) cortex (face/tongue) and supplementary motor area (SMA), in volitional swallowing by recording movement-related cortical potentials (MRCPs). MRCPs with swallowing and tongue protrusion were recorded from scalp electrodes in eight normal right-handed subjects and from implanted subdural electrodes in six epilepsy patients. The experiment by scalp EEG in normal subjects revealed that premovement Bereitschaftspotentials (BP) activity for swallowing was largest at the vertex and lateralized to either hemisphere in the central area. The experiment by epicortical EEG in patients confirmed that face/tongue SMI and SMA were commonly involved in swallowing and tongue protrusion with overlapping distribution and interindividual variability. BP amplitude showed no difference between swallowing and tongue movements, either at face/tongue SMI or at SMA, whereas postmovement potential (PMP) was significantly larger in tongue protrusion than in swallowing only at face/tongue SMI. BP occurred earlier in swallowing than in tongue protrusion. Comparison between face/tongue SMI and SMA did not show any difference with regard to BP and PMP amplitude or BP onset time in either task. The preparatory role of the cerebral cortex in swallowing was similar to that in tongue movement, except for earlier activation in swallowing. Postmovement processing of swallowing was lesser than that of tongue movement in face/tongue SMI; probably suggesting that the cerebral cortex does not play a significant role in postmovement processing of swallowing. SMA plays a supplementary role to face/tongue SMI both in swallowing and tongue movements.  相似文献   

8.
9.
The primary motor cortex (M1) is the main effector structure implicated in the generation of voluntary movements and is directly involved in motor learning. The intrinsic horizontal neuronal connections of M1 exhibit short-term and long-term plasticity, which is a strong substrate for learning-related map reorganization. Transcranial direct current stimulation (tDCS) applied for few minutes over M1 has been shown to induce relatively long-lasting plastic alterations and to modulate motor performance. Here we test the hypothesis that the relatively long-lasting synaptic modification induced by tDCS over M1 results in the alteration of associations among populations of M1 neurons which may be reflected in changes of its functional architecture. fMRI resting-state datasets were acquired immediately before and after 10 minutes of tDCS during rest, with the anode/cathode placed over the left M1. For each functional dataset, grey-matter voxels belonging to Brodmann area 4 (BA4) were labelled and afterwards BA4 voxel-based synchronization matrices were calculated and thresholded to construct undirected graphs. Nodal network parameters which characterize the architecture of functional networks (connectivity degree, clustering coefficient and characteristic path-length) were computed, transformed to volume maps and compared before and after stimulation. At the dorsolateral-BA4 region cathodal tDCS boosted local connectedness, while anodal-tDCS enhanced long distance functional communication within M1. Additionally, the more efficient the functional architecture of M1 was at baseline, the more efficient the tDCS-induced functional modulations were. In summary, we show here that it is possible to non-invasively reorganize the intrinsic functional architecture of M1, and to image such alterations.  相似文献   

10.
Hatsopoulos NG  Suminski AJ 《Neuron》2011,72(3):477-487
The primary motor cortex is a critical node in the network of brain regions responsible for voluntary motor behavior. It has been less appreciated, however, that the motor cortex exhibits sensory responses in a variety of modalities including vision and somatosensation. We review current work that emphasizes the heterogeneity in sensorimotor responses in the motor cortex and focus on its implications for cortical control of movement as well as for brain-machine interface development.  相似文献   

11.
Owing to the microscopical investigation, using selective neurotoxin 5,7-dihydroxytryptamine, it has been possible to reveal the serotoninergic system and targets of its innervation in the rat cerebral cortex motor area. The serotoninergic axonal varicosities and synaptic boutons are present in all layers of the neocortex. Their large amount is revealed in the I and II layers. The terminals form contacts with dendrites of small size, sometimes they terminate on the head of the spines, as well as on bodies of neurons in different layers. According to their position and ultrastructural organization these neurons are, perhaps, pyramidal, that is glutamatergic, and those less in their size--refer to interneurons and can be GABAergic ones. Basing on own data and those of the literature, concerning the existence of nonsynaptic link for transmission of serotoninergic effects, a conclusion is made that a coordinating functioning of the synaptic and non-synaptic intercellular integrative mechanisms ensure a wide range of functions of the serotoninergic system in the cerebral cortex.  相似文献   

12.
13.
14.
15.
The pattern of change produced in somatosensory evoked potential (EP) in the forelimb projection area within the motor cortex (MI) following lesion of the projection area of the same limb in the somatosensory cortex (SI) or in parietal cortex area 5 was investigated during chronic experiments on waking dogs. Amplitude of the initial positive — negative wave of EP declined to 28–63% of preoperational level in all cases. No significant recovery of EP was noted for three weeks. Thus, a correlation between change in EP and spontaneous recuperation of the precision motor response occurring within two weeks after lesion of the SI did not exist. Nor was EP reinstated in the MI after ablation of area 5, despite complete but gradual reinstatement of EP (after an initial decline to 53%) in the nearby SI region. This protracted depression of EP seems to have been associated with breakdown of somatotopic sensory input from the SI or from area 5 to the MI, since EP in the motor cortex of the intact hemisphere and the hindlimb projection area within the MI on the lesioned side either remained unchanged or recovered within a week or two.Institute of Higher Nervous Activity and Neurophysiology, Academy of Sciences of the USSR, Moscow. Translated from Neirofiziologiya, Vol. 22, No. 1, pp. 61–68, January–February, 1990.  相似文献   

16.
17.
Modern ideas about the motor cortex neuronal mechanisms ensuring the initiation and correction of the instrumental manipulational movements in mammals have been analysed. A close correlation has been established to exist between the neuronal activity and various characteristics of movement including those that are not induced by muscle force. The role of somatic afferentation in the formation and realization of the movement programme is analysed as well as in motor output modulation by means of fast feedback.  相似文献   

18.
初级运动皮层(primary motor cortex,M1),在精细运动执行中起非常重要的作用,同时在皮质-基底神经节-丘脑-皮质神经通路中也发挥重要的作用.本文结合当前研究进展,围绕M1区神经元构筑、突触投射及多巴胺受体分布及帕金森病(Parkinson's disease,PD)后神经元电生理学变化等方面阐述M1...  相似文献   

19.
The role of the motor cortex was investigated during learning unusual postural adjustment. Healthy subjects held their right (postural) forearm in a horizontal position while supporting a 1-kG load via an electromagnet. The postural forearm position was perturbed by the load release triggered by other elbow voluntary movement. Repetition of the imposed unloading test resulted in a progressive reduction of the maximal forearm rotation, accompanied by the anticipatory decrease in m. biceps brachii activity (learning). Control situation consisted of the voluntary forearm loading. Using the transcranial magnetic stimulation we examined changes in the motor evoked potential of the m. biceps brahii at the beginning and at the end of learning. The evoked potential amplitude did not significantly change in process of the decrease of m. biceps brachii activity. At the end of learning, motor evoked potential / baseline electromyogram ratio increased as compared to the beginning of learning and to the control situation. The results highlight the fundamental role of the motor cortex in suppression of synergies which interfere with formation of a new coordination during motor learning.  相似文献   

20.
Vertically oriented bundles of apical dendrites in the cat motor cortex were studied by methods of light and electron microscopy. The presence of desmosome-like and dendro-dendritic contacts in the bundles is regarded as the structural basis for electrotonic interaction between neurons in the same column. Axo-spinous "en passant" contacts between the descending axon of the pyramids of layer III and the apical dendrite of pyramids in layer V, possibly serving to regulate the activity of the principal cortical output elements, are described.A. A. Zhdanov Leningrad State University. Translated from Neirofiziologiya, Vol. 8, No. 5, pp. 455–458, September–October, 1976.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号