共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Protein kinase PKN1 associates with TRAF2 and is involved in TRAF2-NF-kappaB signaling pathway 总被引:1,自引:0,他引:1
Gotoh Y Oishi K Shibata H Yamagiwa A Isagawa T Nishimura T Goyama E Takahashi M Mukai H Ono Y 《Biochemical and biophysical research communications》2004,314(3):688-694
PKN1 is a fatty acid and Rho-activated serine/threonine protein kinase whose catalytic domain is highly homologous to protein kinase C (PKC) family. In yeast two-hybrid screening for PKN1 binding proteins, we identified tumor necrosis factor alpha (TNFalpha) receptor-associated factor 2 (TRAF2). TRAF2 is one of the major mediators of TNF receptor superfamily transducing TNF signal to various functional targets, including activation of NF-kappaB, JNK, and apoptosis. FLAG-tagged PKN1 was co-immunoprecipitated with endogenous TRAF2 from HEK293 cell lysate, and in vitro binding assay using the deletion mutants of TRAF2 showed that PKN1 directly binds to the TRAF domain of TRAF2. PKN1 has the TRAF2-binding consensus sequences PXQX (S/T) at amino acid residues 580-584 (PIQES), and P580AQ582A mutant was not co-immunoprecipitated with TRAF2. Furthermore, the reduced expression of PKN1 by RNA interference (RNAi) down-regulated TRAF2-induced NF-kappaB activation in HEK293T cells. These results suggest that PKN1 is involved in TRAF2-NF-kappaB signaling pathway. 相似文献
3.
4.
Chen D Li Z Yang Q Zhang J Zhai Z Shu HB 《Biochemical and biophysical research communications》2003,310(3):720-724
Receptor-interacting protein (RIP) is a serine/threonine protein kinase that is critically involved in tumor necrosis factor receptor-1 (TNF-R1)-induced NF-kappaB activation. In a yeast two-hybrid screening for potential RIP-interacting proteins, we identified a novel protein designated as NKAP. Although NKAP interacts with RIP in yeast, NKAP does not interact with RIP in mammalian cells in co-immunoprecipitation experiments. When overexpressed in 293 cells, NKAP activated NF-kappaB in a dose-dependent manner. Moreover, down-regulation of NKAP by antisense RNA significantly inhibited TNF- and IL-1-induced NF-kappaB activation. Immunofluorescent staining indicated that NKAP was localized in the nucleus. Our findings suggest that NKAP is a novel nuclear regulator of TNF- and IL-1-induced NF-kappaB activation. 相似文献
5.
6.
7.
《Saudi Journal of Biological Sciences》2020,27(6):1562-1565
The TRAIP interacting protein is known as a negative regulator of TNF-induced-nuclear factor, kappa-light-chain-enhancer of activated B cell (NF-κB) by direct interaction with the adaptor protein TRAF2, which inhibits the function of TRAF2 via the RINGCC domain protein. The TRAIP protein is composed of 469 amino acids with an N-terminal RING motif that is followed by a coiled coil (CC) and leucine zipper domain. TRAIP proteins are critical in programmed cell death, cell proliferation and differentiation, and embryonic development. The critical functions of TRAIP together with the molecular inhibitory mechanism effect of TRAIP have been reported by two different studies and have opened up new research into the field of TRAF biology. In this study, we designed different constructs of the Leucine zipper domain to find the over –expressed construct for further studies. We successfully cloned the C-terminal TRAIP containing the leucine zipper domain. In addition, we have over-expressed and purified the TRAIP LZ for their biochemical characterization. 相似文献
8.
The human lymphotoxin beta receptor (LTbetaR), a member of the tumor necrosis factor (TNF) receptor superfamily, is essential for not only the development and organization of secondary lymphoid tissues, but also for chemokine release. Even though LTbetaR was shown to recruit TNF-receptor-associated factor (TRAF) 2, 3, and 5, and to induce cell apoptosis or NF-kappaB activation, however, the downstream signaling leading to chemokine expression is not illustrated yet. In this study, we find that overexpression of LTbetaR in HEK293 cells increases IL-8 promoter activity and leads to IL-8 release. LTbetaR-induced IL-8 gene expression requires NF-kappaB (-80 to -71) and AP-1 (-126 to -12) binding sites located in IL-8 promoter, and NF-kappaB is more crucial than AP-1 for IL-8 gene expression. Reporter assay with dominant-negative mutants of TRAFs reveals that TRAF2, 3, and 5, as well as the downstream signal molecules NIK, IKKalpha, and IKKbeta, are involved in IL-8 gene expression. LTbetaR-mediated IL-8 response was inhibited by the dominant-negative mutants of ASK1, MKK4, MKK7, and JNK, but not by those of MEKK1, TAK1, MEK, ERK, and p38 MAPK. This suggests that IL-8 induction by LTbetaR is via TRAFs-elicited signaling pathways, including NIK/IKK-dependent NF-kappaB activation and ASK/MKK/JNK-dependent AP-1 activation. 相似文献
9.
10.
We use the LPS-stimulated macrophage as a model of inflammation to investigate the anti-inflammatory effects of tomatidine and solasodine, whose structures resemble glucocorticoids. We found that tomatidine exhibited a more potent anti-inflammatory effect than solasodine. Tomatidine could decrease inducible nitric oxide synthase and cyclooxygenase-2 expression through suppression of I-kappaBalpha phosphorylation, NF-kappaB nuclear translocation and JNK activation, which in turn inhibits c-jun phosphorylation and Oct-2 expression. Here, we demonstrate that tomatidine acts as an anti-inflammatory agent by blocking NF-kappaB and JNK signaling, and may possibly be developed as a useful agent for the chemoprevention of cancer or inflammatory diseases. 相似文献
11.
Droll L Song YH Krohn A Muehlberg F Alt E 《Biochemical and biophysical research communications》2008,371(4):626-629
The objective of our study was to determine whether TNFα can protect tissue resident stem cells from hydrogen peroxide (H2O2) induced apoptosis. Apoptosis was measured via fluorescence activated flow cytometry of fluorescein-conjugated Annexin V in passage 3 human ASCs. Our data show that application of 300 μM H2O2 for 3 h induced a high number of cells to undergo apoptosis. The number of apoptotic cells significantly decreased when cells were preincubated with TNFα. TNFα caused a rapid activation of NF-κB within 15 min as evidenced by gel shift assay (EMSA). On further dissection of the NF-кB complex, the p50 subunit which generally forms heterodimers with p65 appears to form a p50/p50 homodimer instead of conventional p50/p65 heterodimer. This novel finding has implications for tissue regeneration and might as well be of importance for cancer cell growth and tumor progression. 相似文献
12.
13.
TNF alpha acting on TNFR1 promotes breast cancer growth via p42/P44 MAPK, JNK, Akt and NF-kappa B-dependent pathways 总被引:2,自引:0,他引:2
Rivas MA Carnevale RP Proietti CJ Rosemblit C Beguelin W Salatino M Charreau EH Frahm I Sapia S Brouckaert P Elizalde PV Schillaci R 《Experimental cell research》2008,314(3):509-529
14.
Götschel F Kern C Lang S Sparna T Markmann C Schwager J McNelly S von Weizsäcker F Laufer S Hecht A Merfort I 《Experimental cell research》2008,314(6):1351-1366
15.
Inducible heat shock protein 70 (Hsp70) is one of the most important HSPs for maintenance of cell integrity during normal cellular growth as well as pathophysiological conditions. Tumor necrosis factor receptor-associated factor 6 (TRAF6) is a crucial signaling transducer that regulates a diverse array of physiological and pathological processes and is essential for activating NF-kappaB signaling pathway in response to bacterial lipopolysaccharide (LPS). Here we report a novel mechanism of Hsp70 for preventing LPS-induced NF-kappaB activation in RAW264.7 macrophage-like cells. Our results show that Hsp70 can associate with TRAF6 physically in the TRAF-C domain and prevent TRAF6 ubiquitination. The stimulation of LPS dissociates the binding of Hsp70 and TRAF6 in a time-dependent manner. Hsp70 inhibits LPS-induced NF-kappaB signaling cascade activation in heat-shock treated as well as Hsp70 stable transfected RAW264.7 cells and subsequently decreases iNOS and COX-2 expression. Two Hsp70 mutants, Hsp70DeltaC(1-428aa) with N-terminal ATPase domain and Hsp70C(428-642aa) with C-terminal domain, lack the ability to influence TRAF6 ubiquitination and TRAF6-triggered NF-kappaB activation. Taken together, these findings indicate that Hsp70 inhibits LPS-induced NF-kappaB activation by binding TRAF6 and preventing its ubiquitination, and results in inhibition of inflammatory mediator production, which provides a new insight for analyzing the effects of Hsp70 on LPS-triggered inflammatory signal transduction pathways. 相似文献
16.
17.
18.
Xin Cai Jianfang Du Ye Liu Wengrong Xia Jing Liu Minji Zou Yuanyuan Wang Min Wang Hang Su Donggang Xu 《Gene》2013
Tumor necrosis factor receptor-associated factor 3 (TRAF3) is a highly versatile immune regulator that positively controls type I interferon production, but negatively regulates the activation of mitogen-activated protein kinase and alternative nuclear factor-κB signaling. The precise function of TRAF3 in different signaling pathways remains unclear. Thus, in a yeast two-hybrid assay, TRAF3 was used as the bait to screen a human spleen cDNA library for TRAF3 interactors that may potentially mediate TRAF3-regulated functions. Receptor-interacting protein 2 (RIP2) was identified as a TRAF3 binding partner. The interaction between TRAF3 and RIP2 was further confirmed by mammalian two-hybrid, co-immunoprecipitation and GST pull-down assays, and this interaction was also verified by immunoprecipitation of endogenous proteins in Ramos cells, a human B lymphoma cell line. RIP2 is an activator of NF-κB. We therefore examined the effect of TRAF3 in RIP2-induced NF-κB activation. The result showed that TRAF3 could inhibit RIP2-induced NF-κB activation. Given the high expression of RIP2 in the B lymphoma cell line and endogenous interaction between TRAF3 and RIP2 in Ramos cells, the role of RIP2 was further studied. The result demonstrated that RIP2 knockdown was capable of increasing the expression of TRAF3 and suppressing the activation of alternative NF-кB pathway in Ramos cells. These findings suggest that functional interactions between RIP2 and TRAF3 may provide some clues to the mechanisms of TRAF3-involvement in both positive and negative regulatory functions. 相似文献
19.
Yu Q Minoda Y Yoshida R Yoshida H Iha H Kobayashi T Yoshimura A Takaesu G 《Biochemical and biophysical research communications》2008,365(1):189-194
Human T cell leukemia virus type 1 (HTLV-1) Tax is an oncoprotein that plays a crucial role in the proliferation and transformation of HTLV-1-infected T lymphocytes. It has recently been reported that Tax activates a MAPKKK family, TAK1. However, the molecular mechanism of Tax-mediated TAK1 activation is not well understood. In this report, we investigated the role of TAK1-binding protein 2 (TAB2) in Tax-mediated TAK1 activation. We found that TAB2 physically interacts with Tax and augments Tax-induced NF-κB activity. Tax and TAB2 cooperatively activate TAK1 when they are coexpressed. Furthermore, TAK1 activation by Tax requires TAB2 binding as well as ubiquitination of Tax. We also found that the overexpression of TRAF2, 5, or 6 strongly induces Tax ubiquitination. These results suggest that TAB2 may be critically involved in Tax-mediated activation of TAK1 and that NF-κB-activating TRAF family proteins are potential cellular E3 ubiquitin ligases toward Tax. 相似文献