首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Visna Virus dUTPase Is Dispensable for Neuropathogenicity   总被引:3,自引:2,他引:1       下载免费PDF全文
The major part of the dUTPase-encoding region of the visna virus genome was deleted. Intracerebral injection of the mutant virus resulted in a somewhat reduced viral load compared to that resulting from injection of the wild type, especially in the lungs, but the neuropathogenic effects were comparable. The dUTPase gene is dispensable for induction of lesions in the brain.  相似文献   

2.
3.
The hepatitis C virus (HCV) genome contains numerous RNA elements that are required for its replication. Most of the identified RNA structures are located within the 5′ and 3′ untranslated regions (UTRs). One prominent RNA structure, termed the cis-acting replication element (CRE), is located within the NS5B coding region. Mutation of part of the CRE, the 5BSL3.2 stem-loop, impairs HCV RNA replication. This loop has been implicated in a kissing interaction with a complementary stem-loop structure in the 3′ UTR. Although it is clear that this interaction is required for viral replication, the function of the interaction, and its regulation are unknown. In order to gain insight into the CRE function, we isolated cellular proteins that preferentially bind the CRE and identified them using mass spectrometry. This approach identified EWSR1 as a CRE-binding protein. Silencing EWSR1 expression impairs HCV replication and infectious virus production but not translation. While EWRS1 is a shuttling protein that is extensively nuclear in hepatocytes, substantial amounts of EWSR1 localize to the cytosol in HCV-infected cells and colocalize with sites of HCV replication. A subset of EWRS1 translocates into detergent-resistant membrane fractions, which contain the viral replicase proteins, in cells with replicating HCV. EWSR1 directly binds the CRE, and this is dependent on the intact CRE structure. Finally, EWSR1 preferentially interacts with the CRE in the absence of the kissing interaction. This study implicates EWSR1 as a novel modulator of CRE function in HCV replication.  相似文献   

4.
Canine distemper virus (CDV) becomes able to use human receptors through a single amino acid substitution in the H protein. In addition, CDV strains possessing an intact C protein replicate well in human epithelial H358 cells. The present study showed that CDV strain 007Lm, which was isolated from lymph node tissue of a dog with distemper, failed to replicate in H358 cells, although it possessed an intact C protein. Sequence analyses suggested that a cysteine-to-tyrosine substitution at position 267 of the V protein caused this growth defect. Analyses using H358 cells constitutively expressing the CDV V protein showed that the V protein with a cysteine, but not that with a tyrosine, at this position effectively blocked the interferon-stimulated signal transduction pathway, and supported virus replication of 007Lm in H358 cells. Thus, the V protein as well as the C protein appears to be functional and essential for CDV replication in human epithelial cells.  相似文献   

5.
Interferon (IFN) responses are critical for controlling herpes simplex virus 1 (HSV-1). The importance of neuronal IFN signaling in controlling acute and latent HSV-1 infection remains unclear. Compartmentalized neuron cultures revealed that mature sensory neurons respond to IFNβ at both the axon and cell body through distinct mechanisms, resulting in control of HSV-1. Mice specifically lacking neural IFN signaling succumbed rapidly to HSV-1 corneal infection, demonstrating that IFN responses of the immune system and non-neuronal tissues are insufficient to confer survival following virus challenge. Furthermore, neurovirulence was restored to an HSV strain lacking the IFN-modulating gene, γ34.5, despite its expected attenuation in peripheral tissues. These studies define a crucial role for neuronal IFN signaling for protection against HSV-1 pathogenesis and replication, and they provide a novel framework to enhance our understanding of the interface between host innate immunity and neurotropic pathogens.  相似文献   

6.
7.
8.
9.
Hepatitis C virus (HCV) nonstructural protein 5A (NS5A) is a component of the replication complex associated with various cellular proteins. It has been reported that G protein pathway suppressor 2 (GPS2) is a potential NS5A-binding factor, as identified in a yeast two-hybrid screens of human cDNA library using viral proteins as baits [1]. In this study, we demonstrated the interaction between GPS2 and NS5A in mammalian cells by coimmunoprecipitation analysis and found that both exogenously and endogenously expressed GPS2 interacted with NS5A of genotype 1b and 2a. Mutagenesis study demonstrated that Domain I of NS5A and coiled-coil domain of GPS2 are responsible for the interaction. Knockdown of GPS2 in hepatoma cell lines suppressed the replication of HCV RNA, which can be rescued by the expression of an RNAi-resistant GPS2. Furthermore, overexpression of GPS2 enhanced the association of NS5A with a proviral cellular factor, human vesicle-associated membrane protein-associated protein A (VAP-A), while knockdown of GPS2 disrupted interaction between VAP-A and NS5A. Taken together, our results suggest that GPS2 acts as a bridge between NS5A and VAP-A and is required for efficient HCV replication.  相似文献   

10.
11.
12.
The P gene of measles virus (MV) encodes the phosphoprotein, a component of the virus ribonucleoprotein complex, and two nonstructural proteins, C and V, with unknown functions. Growth of recombinant MV, defective in C or V expression, was explored in human peripheral blood mononuclear cells (PBMC). The production of infectious recombinant MV V was comparable to that of parental MV tag in simian Vero fibroblasts and in PBMC. In contrast, MV C progeny was strongly reduced in PBMC but not in Vero cells. Consistently, the expression of both hemagglutinin and fusion proteins, as well as that of nucleoprotein mRNA, was lower in MV C-infected PBMC. Thus, efficient replication of MV in natural host cells requires the expression of the nonstructural C protein. The immunosuppression that accompanies MV infection is associated with a decrease in the in vitro lymphoproliferative response to mitogens. MV C was as potent as MV tag or MV V in inhibiting the phytohemagglutinin-induced proliferation of PBMC, indicating that neither the C protein nor the V protein is directly involved in this effect.  相似文献   

13.
14.
Although the Malawi Lil20/1 (MAL) strain of African swine fever virus (ASFV) was isolated from Ornithodoros sp. ticks, our attempts to experimentally infect ticks by feeding them this strain failed. Ten different collections of Ornithodorus porcinus porcinus ticks and one collection of O. porcinus domesticus ticks were orally exposed to a high titer of MAL. At 3 weeks postinoculation (p.i.), <25% of the ticks contained detectable virus, with viral titers of <4 log(10) 50% hemadsorbing doses/ml. Viral titers declined to undetectability in >90% of the ticks by 5 weeks p.i. To further study the growth defect, O. porcinus porcinus ticks were orally exposed to MAL and assayed at regular intervals p.i. Whole-tick viral titers dramatically declined (>1,000-fold) between 2 and 6 days p.i., and by 18 days p.i., viral titers were below the detection limit. In contrast, viral titers of ticks orally exposed to a tick-competent ASFV isolate, Pretoriuskop/96/4/1 (Pr4), increased 10-fold by 10 days p.i. and 50-fold by 14 days p.i. Early viral gene expression, but not extensive late gene expression or viral DNA synthesis, was detected in the midguts of ticks orally exposed to MAL. Ultrastructural analysis demonstrated that progeny virus was rarely present in ticks orally exposed to MAL and, when present, was associated with extensive cytopathology of phagocytic midgut epithelial cells. To determine if viral replication was restricted only in the midgut epithelium, parenteral inoculations into the hemocoel were performed. With inoculation by this route, a persistent infection was established although a delay in generalization of MAL was detected and viral titers in most tissues were typically 10- to 1,000-fold lower than those of ticks injected with Pr4. MAL was detected in both the salivary secretion and coxal fluid following feeding but less frequently and at a lower titer compared to Pr4. Transovarial transmission of MAL was not detected after two gonotrophic cycles. Ultrastructural analysis demonstrated that, when injected, MAL replicated in a number of cell types but failed to replicate in midgut epithelial cells. In contrast, ticks injected with Pr4 had replicating virus in midgut epithelial cells. Together, these results indicate that MAL replication is restricted in midgut epithelial cells. This finding demonstrates the importance of viral replication in the midgut for successful ASFV infection of the arthropod host.  相似文献   

15.
16.
Viral manipulation of the transduction pathways associated with key cellular functions such as actin remodeling, microtubule stabilization, and survival may favor a productive viral infection. Here we show that consistent with the vaccinia virus (VACV) and cowpox virus (CPXV) requirement for cytoskeleton alterations early during the infection cycle, PBK/Akt was phosphorylated at S473 [Akt(S473-P)], a modification associated with the mammalian target of rapamycin complex 2 (mTORC2), which was paralleled by phosphorylation at T308 [Akt(T308-P)] by PI3K/PDK1, which is required for host survival. Notably, while VACV stimulated Akt(S473-P/T308-P) at early (1 h postinfection [p.i.]) and late (24 h p.i.) times during the infective cycle, CPXV stimulated Akt at early times only. Pharmacological and genetic inhibition of PI3K (LY294002) or Akt (Akt-X and a dominant-negative form of Akt-K179M) resulted in a significant decline in virus yield (from 80% to ≥90%). This decline was secondary to the inhibition of late viral gene expression, which in turn led to an arrest of virion morphogenesis at the immature-virion stage of the viral growth cycle. Furthermore, the cleavage of both caspase-3 and poly(ADP-ribose) polymerase and terminal deoxynucleotidyl transferase-mediated deoxyuridine nick end labeling assays confirmed that permissive, spontaneously immortalized cells such as A31 cells and mouse embryonic fibroblasts (MEFs) underwent apoptosis upon orthopoxvirus infection plus LY294002 treatment. Thus, in A31 cells and MEFs, early viral receptor-mediated signals transmitted via the PI3K/Akt pathway are required and precede the expression of viral antiapoptotic genes. Additionally, the inhibition of these signals resulted in the apoptosis of the infected cells and a significant decline in viral titers.The family Poxviridae is a family of large, linear, double-stranded DNA viruses that carry out their entire life cycle within the cytoplasmic compartment of infected cells. Vaccinia virus (VACV) is a prototypical member of the genus Orthopoxvirus, which also includes the closely related cowpox virus (CPXV) (12, 52). The genomes of these viruses are approximately 200 kbp in length, with a coding capacity of approximately 200 genes. The genes involved in virus-host interactions are situated at both ends of the genome and are associated with the evasion of host immune defenses (1). These evasion mechanisms operate mainly extracellularly. For example, the secretion of soluble cytokine and chemokine receptor homologues blocks the receptor recognition by intercepting the cognate cytokine/chemokine in the extracellular environment. This mechanism facilitates viral attachment and entry into cells (1, 70). Therefore, decoy receptors for alpha interferon (IFN-α), IFN-β, IFN-γ, and tumor necrosis factor alpha play an important immunomodulatory role by affecting both the host antiviral and apoptotic responses.To counteract the host proapoptotic response, poxviruses have developed a number of antiapoptotic strategies, including the inhibition of apoptotic signals triggered by the extrinsic pathway (those mediated by death receptors such as tumor necrosis factor and Fas ligand) or the intrinsic pathway (mediated by the mitochondria and triggered upon viral infection) (1, 25, 70, 74). Many studies previously identified viral inhibitors that block specific steps of the intrinsic pathway. These include the VACV-encoded E3L, F1L, and N1L genes and the myxoma virus (MYXV)-encoded M11L gene, which block cytochrome c release (14, 20, 34, 39, 45, 75, 90), and the CPXV-encoded cytokine response modifier gene (CrmA) as well as the VACV-encoded SPI-2 gene, which inhibits both caspase-1 and caspase-8 (25, 58, 61, 74).An emerging body of evidence has also highlighted the pivotal role played by intracellular signaling pathways in Orthopoxvirus biology (18, 48, 92). We and others have shown that poxvirus manipulation of signaling pathways can be virus specific. For example, while both VACV and CPXV stimulate the MEK/extracellular signal-regulated kinase (ERK)/EGR-1 pathway during a substantial length of time of their infective cycle, the pathway is required only for VACV replication, whereas its role in CPXV biology has yet to be identified (71). MYXV, a rabbit-specific poxvirus, also activates the MEK/ERK pathway in a mouse model of poxvirus-host interactions. However, this stimulation led to the expression of IFN-β, which consequently blocked virus replication and possibly explains why MYXV has such a restricted host range (87).Another signaling molecule associated with viral replication is Akt kinase (also known as protein kinase B). The MYXV host range factor M-T5 is able to reprogram the intracellular environment, thereby increasing human tumor cell permissiveness to viral replication, which is directly associated with levels of phosphorylated Akt (88). In addition, M-T5 is functionally replaced by the host phosphatidylinositol 3-kinase (PI3K) enhancer A protein (92).The transmission of intracellular signals mediated by the serine/threonine kinase Akt to downstream molecules in response to diverse stimuli such as growth factors, insulin, and hormones is dependent upon the phosphorylation of serine 473 (S473-P) and threonine 308 (T308-P). This phosphorylation is mediated by mammalian target of rapamycin complex 2 (mTORC2) and phosphoinositide-dependent protein kinase 1 (PDK1), which act as downstream effectors of the PI3K/Akt/mTORC1 pathway (2, 66). PI3Ks are a family of enzymes (classes I to III) that generate lipid second messengers by the phosphorylation of plasma membrane phosphoinositides. Class IA PI3Ks consist of a catalytic subunit (p110, comprising the three isoforms α, β, and δ) and an adaptor/regulatory subunit (p85, comprising the two isoforms α and β) (for a detailed review, see reference 80).The Akt family of proteins is comprised of the three isoforms α, β, and γ, which are composed of an N-terminal pleckstrin homology domain, a central catalytic domain, and a C-terminal hydrophobic domain. Akt is recruited to the plasma membrane through the binding of its pleckstrin homology domain to the phosphatidylinositol 3,4,5-triphosphate (PIP3), which is a product of PI3K that is anchored to the plasma membrane. PDK1 is also recruited to the plasma membrane through interactions with PIP3. As both PDK1 and Akt interact with PIP3, PDK1 colocalizes with Akt and activates it by phosphorylating threonine 308 (T308-P) (2, 66). Following its activation, Akt phosphorylates a number of downstream substrates such as caspase-9, BAD, glycogen synthase kinase 3β (GSK-3β), and FKHR. This leads to the suppression of apoptosis, cell growth, survival, and proliferation (11, 16, 56).Another downstream target of PI3K/Akt is mTOR, a serine/threonine kinase that plays a central role in the regulation of cell growth, proliferation, survival, and protein synthesis (26). mTOR kinase has recently been found to be associated with two functionally distinct complexes in mammalian cells, known as mTORC1 and mTORC2 (63, 66). Although these multiprotein complexes share molecules in common, distinct adaptor proteins are recruited into each complex: regulatory-associated protein of TOR (raptor) is recruited into mTORC1, while rapamycin-insensitive companion of TOR (rictor) is recruited into mTORC2 (33, 64). While mTORC1 controls cell growth and protein translation and has proven to be rapamycin sensitive, mTORC2 regulates the actin cytoskeleton and is assumed to be rapamycin insensitive, even though under conditions of prolonged exposure to the drug, it appears to inhibit mTORC2 assembly (29, 64, 65). Additionally, it has been demonstrated that mTORC2 regulates the activity of Akt through the phosphorylation of S473 (S473-P). S473-P appears to be required for the full activation of Akt, since S473-P has been shown to enhance the subsequent phosphorylation of T308 by PDK1 (66, 67, 94). Moreover, the phosphorylation of both S473 and T308 results in a four- to fivefold increase in Akt activity compared to T308-P by PDK1 alone (66).The PI3K/PDK1/Akt(T308)/mTORC1 pathway regulates vital cellular processes that are important for viral replication and propagation, including cell growth, proliferation, and protein translation. This pathway is particularly important for the replication of DNA viruses, as their replication is cap dependent. However, the Akt signaling pathway can also negatively affect viral replication. The stress response downstream of Akt signaling, including hypoxia and energy and amino acid depletion, inhibits mTORC1 (5, 9, 69). Therefore, DNA viruses must overcome these constraints to translate their mRNAs.Pharmacological disruption of the PI3K/Akt pathway with the specific PI3K inhibitor LY294002 (2-morpholino-8-phenyl-4H-1-benzopyran-4-one) (82) has been reported to not only increase the cleavage of downstream molecules associated with proapoptotic activity [e.g., poly(ADP-ribose) polymerase (PARP) and the executioner caspase-3] (38, 41) but also promote microtubule stabilization, actin filament remodeling/cell migration, and bleb formation/viral infectivity (10, 35, 49, 54, 59).Because the PI3K/Akt and PI3K/Akt/mTOR pathways influence diverse cellular functions and possibly a healthy antiviral response, usurping these pathways could support an increase in viral replication. In support of this, a number of reports have demonstrated that either the PI3K/Akt or the PI3K/Akt/mTOR pathway plays a role in the replication of many viruses including flavivirus (38), hepatitis C virus (27), human immunodeficiency virus type 1 (93), human papillomavirus (44, 96), respiratory syncytial virus (77), coxsackievirus B3 (19), Epstein-Barr virus (17, 50, 73), human cytomegalovirus (36, 37, 72), herpes simplex virus type 1 (7, 83), varicella-zoster virus (60), Kaposi''s sarcoma-associated herpesvirus (89), adenovirus (55), and simian virus 40 (SV40) (95). With this in mind, we also investigated whether the PI3K/Akt pathway played a pivotal role in orthopoxvirus biology. In this study, we show that the VACV- and CPXV-stimulated PI3K/Akt pathway not only contributes to the prevention of host-cell death but also plays a beneficial role in the viral replication cycle.  相似文献   

17.
18.
19.
Functional importance of Vpx protein of human immunodeficiency virus type 2 was evaluated in various types of cells. In 8 lymphocytic or monocytic cell lines tested, vpx mutant virus grew as well as wild-type virus. Only in primary peripheral blood mononuclear cell cultures, severely retarded growth of mutant virus was observed. No replication of vpx-minus virus was detected in primary macrophage cells. A highly sensitive single-round replication assay system was used to determine the defective replication phase in primary mononuclear cells of vpx mutant virus. In all cell lines examined, vpx mutant displayed no abnormality. In contrast, the vpx mutant was demonstrated to be defective at an early stage of the infection cycle in primary cell cultures. No evidence of a replication-defect at a late phase in primary cells of the vpx mutant was obtained by a transfection-coculture method. These results indicate that the virion-associated Vpx protein is essential for early viral replication process in natural target cells such as primary macrophages.  相似文献   

20.
About one-third of the MA protein in Rous sarcoma virus (RSV) is phosphorylated. Previous analyses of this fraction have suggested that serine residues 68 and 106 are the major sites of phosphorylation. As a follow-up to that study, we have characterized mutants which have these putative phosphorylation sites changed to alanine, either separately or together. None of the substitutions (S68A, S106A, or S68/106A) had an effect on the budding efficiency or infectivity of the virus. Upon examination of the 32P-labeled viral proteins, we found that the S68A substitution did not affect phosphorylation in vivo at all. In contrast, the S106A substitution prevented all detectable phosphorylation of MA, suggesting that there is only one major site of phosphorylation in MA. We also found that the RSV MA protein is phosphorylated on tyrosine, but the amount was low and detectable only with large numbers of virions and an antibody specific for phosphotyrosine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号