首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The properties of a new type of oligomycin-resistant Chinese hamster ovary (CHO) cell line (Olir 2.2) are described in this paper. Olir 2.2 cells were approximately 50,000-fold more resistant to oligomycin than were wild-type CHO cells when tested in glucose-containing medium, but only 10- to 100-fold more resistant when tested in galactose-containing medium. Olir 2.2 cells grew with a doubling time similar to that of wild-type cells both in the presence or absence of oligomycin. Oligomycin resistance in Olir 2.2 cells was stable in the absence of drug. In vitro assays indicated that there was approximately a 25-fold increase in the resistance of the mitochondrial ATPase to inhibition by oligomycin in Olir 2.2 cells, with little change in the total ATPase activity. The electron transport chain was shown to be functional in Olir 2.2 cells. Olir 2.2 cells were cross-resistant to other inhibitors of the mitochondrial ATPase (such as rutamycin, ossamycin, peliomycin, venturicidin, leucinostatin, and efrapeptin) and to other inhibitors of mitochondrial functions (such as chloramphenicol, rotenone, and antimycin). Oligomycin resistance was expressed codominantly in hybrids between Olir 2.2 cells and wild-type cells. Cross-resistance to ossamycin, peliomycin, chloramphenicol, antimycin, venturicidin, leucinostatin, and efrapeptin was also expressed codominantly in hybrids. Fusions of enucleated Olir 2.2 cells with wild-type cells and characterization of the resulting cybrid clones indicated that resistance to oligomycin and ossamycin results from a mutation in both a nuclear gene and a cytoplasmic gene. Cross-resistance to efrapeptin, leucinostatin, venturicidin, and antimycin results from a mutation in only a nuclear gene.  相似文献   

3.
Gene amplification in a single cell cycle in Chinese hamster ovary cells   总被引:46,自引:0,他引:46  
We have employed Chinese hamster ovary cells synchronized by mitotic selection to study the replication and amplification of the dihydrofolate reductase gene. Using bromodeoxyuridine to differentially label newly replicated DNA, we show that the dihydrofolate reductase gene is replicated during the first 2 h of S phase, a time when, at most, 10% of the total genome has been replicated. We find that a 6-h inhibition of DNA synthesis by hydroxyurea beginning 2 h after the initiation of S phase markedly increases the frequency with which cells become resistant to a 100-fold increment in methotrexate. When DNA synthesis resumes following removal of the hydroxyurea, virtually all of the DNA replicated prior to inhibition, including the dihydrofolate reductase gene, is rereplicated. Analysis of the dihydrofolate reductase enzyme content of cells 24 h after treatment with hydroxyurea using the fluorescence-activated cell sorter reveals a subset of cells with elevated dihydrofolate reductase. It is this subset that contains additional copies of the dihydrofolate reductase gene and from which emerge highly methotrexate-resistant cells. We propose that the initial event of amplification is the rereplication of a variable, but relatively large, amount of the genome. As cells are subsequently placed under selection, a number of processes, including recombination events and loss of nonselected DNA sequences occur, resulting in what appears as differential gene amplification.  相似文献   

4.
W Zhu  P C Keng  W G Chou 《Mutation research》1992,274(3):237-245
Complementary DNA cloning, differential screening and Northern hybridization techniques were used to study differential gene expression in the wild-type Chinese hamster ovary (CHO) K1 cell line and its two X-ray sensitive mutants, xrs-5 and xrs-6. 11 species of mRNAs were found underexpressed in the two independently isolated mutants. The steady-state levels of those mRNAs are 3-26-fold less in the two mutants, depending on the particular species. 6 of the underexpressed mRNAs have been identified by comparing the sequences of the cloned cDNAs to the known sequences in GenBank. 4 of them code for the structural proteins of ferritin heavy chain, nonmuscle myosin light chain 3nm, ribosomal protein S17 and L7, respectively. The other two have strong homology with mouse B2 or retroviral sequences. The remaining 5 mRNAs did not show significant homology with any of the known sequences and apparently represent newly isolated species. The effect of 137Cs gamma-rays on the expression of the 11 mRNAs has been studied. Radiation inhibited the expression of the B2-like gene in the mutants but not in the wild-type CHO cells. The levels of the other 10 mRNAs were not affected by radiation. The underexpression of this group of genes in both xrs-5 and xrs-6 mutants seems to be related to their radiation-sensitive phenotype, although the specific gene responsible has not been identified. Two models are proposed to explain the mechanism of underexpression. It is suggested that a cellular factor or/and chromosome structural changes are involved.  相似文献   

5.
Vincristine resistant CHO cell lines, obtained by prolonged selection in semi-inhibitory drug concentrations show considerable hypersensitivity to verapamil. Their D10 values are around 0.2 micrograms/ml compared to 23 micrograms/ml for unselected controls. Reversion of vincristine resistance during growth in vincristine free medium is correlated with reversal of verapamil sensitivity indicating that the two aspects of the cells' phenotype have a common underlying cause. The rate of uptake of calcium in the absence and presence of verapamil is similar in the vincristine resistant cells and the controls. The correlation of verapamil sensitivity with vincristine resistance is not a universal feature of CHO cell lines resistant to antimicrotubular drugs, since it was found that other resistant cell lines which have been selected by short term exposure to high drug concentrations were not verapamil hypersensitive.  相似文献   

6.
Six X-ray-sensitive (xrs) strains of the CHO-K1 cell line were shown to revert at a very high frequency after treatment with 5-azacytidine. This suggested that there was a methylated xrs+ gene in these strains which was structurally intact, but not expressed. The xrs strains did not complement one another, and the locus was autosomally located. In view of the frequency of their isolation and their somewhat different phenotypes, we propose that the xrs strains are mutants derived from an active wild-type gene. However, there is in addition a methylated silent gene present in the genome. Azacytidine treatment reactivated this gene. We present a model for the functional hemizygosity of mammalian cell lines, which is based on the inactivation of genes by de novo hypermethylation. In contrast to results with xrs strains, other repair-defective lines were found not to be reverted by azacytidine.  相似文献   

7.
Chromosome-mediated gene transfer with the Chinese hamster ovary cell line   总被引:2,自引:0,他引:2  
Using an improved method of chromosome-mediated gene transfer, we have investigated transfer of the codominantly expressed methotrexate-resistant dihydrofolate reductase (MtxRIIIdhfr) gene into Chinese hamster ovary (CHO) cell recipients. The frequency of dhfr gene transfer with CHO cells varied considerably from clone to clone, ranging from 4 X 10(-7) to 5 X 10(-5). Using appropriate cell recipients we were able to test for linkage of several genetic markers available in the CHO cell line. For example, the mutation resulting in the auxotrophic glyB-CHO cell line has been reported by others to be linked to the dhfr gene. However, we could not demonstrate cotransfer of these two markers when glyB- recipient cells were treated with MtxRIII chromosomes and transformant clones were selected for either methotrexate-resistance (MtxR) or glycine prototrophy. We conclude that these two genes are not closely linked in the hamster genome. However, the genes for thymidine kinase (tk) and galactokinase (gk), which are known to be linked in mammalian genomes, were found to cotransfer into CHO recipients with a frequency of about 50%.  相似文献   

8.
The amino acid analog, albizziin, which acts as a competitive inhibitor of asparagine synthetase with respect to glutamine was used to isolate mutants of Chinese hamster ovary cells with alterations in levels of the target enzyme. These mutant lines have been characterized biochemically and genetically. Mutants selected in a single step are up to 40-fold more resistant to the drug than the parental line, express levels of asparagine synthetase activity 6-17-fold greater than that of wild type cells, and act co-dominantly in hybrids. Several classes of mutations can be distinguished on the basis of cross-resistance to beta-aspartyl hydroxamate, another amino acid analog. Studies on asparagine synthetase indicate that resistance to albizziin may be due to altered regulation of asparagine synthetase, structural mutations of the enzyme, and gene amplification.  相似文献   

9.
The formation and removal of UV-induced pyrimidine dimers were measured in restriction fragments near and within the essential dihydrofolate reductase (DHFR) gene in Chinese hamster ovary cells in order to map the genomic fine structure of DNA repair. Dimer frequencies were determined at 0, 8, and 24 h after irradiating the cells with 20 J/m2 UV light (254 nm). Within 8 h, the cells had removed more than 40% of the dimers from sequences near the 5' end of the gene, somewhat fewer from the 3' end, but only 2% from the 3' flanking region and 10% from a region upstream from the gene. The corresponding extent of repair in the genome as a whole is 5-10% in the 8-h period. Isoschizomeric restriction enzyme analysis was used to detect the level of methylation in the fragments in which repair was measured. We found that the only hypomethylated sites in and around the DHFR gene were in the fragment near its 5' end, which displayed maximal DNA repair efficiency. The size of the region of preferential DNA repair at the DHFR locus appears to be in the range of 50-80 kilobases, and this finding is discussed in relation to genomic domains and the structure of mammalian chromatin.  相似文献   

10.
Inhibition of Chinese hamster ovary cell DNA synthesis by hydrogen peroxide   总被引:1,自引:0,他引:1  
The DNA synthesis inhibitory effect of hydrogen peroxide has been examined under a number of experimental conditions. Results have indicated that the effect of the oxidant is more pronounced when the treatment is performed at 37 degrees C than at 4 degrees C and in low density as compared to high density cultures. In addition, similar levels of inhibition were achieved by measuring the incorporation of radiolabelled thymidine in the presence of, or following treatment with, the oxidant. Although early events seem to be responsible for the decreased rate of DNA synthesis, it would appear that hydrogen peroxide does not alter thymidine extracellularly and/or decrease the transport of the nucleoside across the plasma membrane, which may actually be slightly augmented. Thus, the previously illustrated results may represent an underestimate of the actual capacity of the oxidant to reduce DNA synthesis. This inference is further supported by the fact that the effect of hydrogen peroxide appears markedly enhanced in cells preloaded with the radiolabelled precursor. A temporal relationship seems to exist between the steady state level of DNA single strand breaks and the extent of DNA synthesis inhibition by hydrogen peroxide. The oxidant has no effect on DNA chain elongation. In conclusion, data presented in this paper suggest that early events, involving selective effects on replicon initiation, mediate the DNA synthesis inhibitory effect of hydrogen peroxide.  相似文献   

11.
Cyclic nucleotide analogues have been tested for their ability to cause the morphological conversion of Chinese hamster ovary cells in culture, as well as for effects on cyclic AMP-related enzymes. The ability of the analogues to inhibit the cyclic AMP phosphodiesterase activity and to activate the cyclic AMP-dependent protein kinase activity in cell extracts has been measured. Cell cultures were incubated with the analogues and the effects on morphology, intracellular level of cyclic AMP, and in vivo protein kinase activation were determined. All analogues which induced the morphological conversion also caused in vivo activation of the cyclic AMP-dependent protein kinase. Only N6,O2′-dibutryl and N6-monobutyryl cyclic AMp caused caused on increase in intracellular cyclic AMP, presumably through inhibition of the intracellular cyclic AMP phosphodiesterase activity. The increase in cyclic AMP appears to cause the protein kinase activation. However, analogues such as 8-bromo and 8-benzylthio cyclic AMP do not cause any change in intracellular cyclic AMP level and appear to activate the intracellular cyclic AMP-dependent protein kinase directly.  相似文献   

12.
Recombinant human adenovirus (rhAd) has been used extensively for functional protein expression in mammalian cells including those of human and nonhuman origin. High-level protein production by rhAd vectors is expected in their permissive host cells, such as the human embryonic kidney 293 (HEK293) cell line. This is attributed primarily to the permissiveness of HEK293 to rhAd infection and their ability to support viral DNA replication by providing the missing El proteins. However, the HEK293 cells tend to suffer from cytopathic effect (CPE) as a result of virus replication. Under these circumstances, the host cell function is compromised and the culture viability will be reduced. Consequently, newly synthesized polypeptides may not be processed properly at posttranslational levels. Therefore, the usefulness of HEK293 cells for the expression of complex targets such as secreted proteins could be limited. In the search for a more robust cell line as a production host for rhAd expression vectors, a series of screening experiments was performed to isolate clones from Chinese hamster ovary-K1 (CHO-K1) cells. First, multiple rounds of infection of CHO-K1 cells were performed utilizing an rhAd expressing GFP. After each cycle of infection, a small population of CHO cells with high GFP levels was enriched by FACS. Second, individual clones more permissive to human adenovirus infection were isolated from the highly enriched subpopulation by serial dilution. A single clone, designated CHO-K1-C5, was found to be particularly permissive to rhAd infection than the parental pool and has served as a production host in the successful expression of several secreted proteins.  相似文献   

13.
Two UV sensitive DNA-repair-deficient mutants of Chinese hamster ovary cells (43-3B and 27-1) have been characterized. The sensitivity of these mutants to a broad spectrum of DNA-damaging agents: UV254nm, 4-nitroquinoline-1-oxide (4NQO), X-rays, bleomycin, ethylnitrosourea (ENU), ethyl methanesulphonate (EMS), methyl methanesulphonate (MMS) and mitomycin C (MMC) has been determined. Both mutants were not sensitive to X-rays and bleomycin. 43-3B was found to be sensitive to 4NQO, MMC and slightly sensitive to alkylating agents. 27-1 was sensitive only to alkylating agents. The results suggest the existence of two repair pathways for UV-induced cytotoxicity: one pathway which is also used for the removal of 4NQO and MMC adducts and a second pathway which is also used for the removal of alkyl adducts. Parallel to the toxicity, the induction of mutations at the HPRT and Na+/K+-ATPase loci was determined. The increased cytotoxicity to UV, MMC and 4NQO in 43-3B cells and the increased cytotoxicity to UV in 27-1 cells correlated with increased mutability. It was observed that the increase in mutation induction at the HPRT locus was higher than that at the Na+/K+-ATPase locus. As only point mutations give rise to viable mutants at the Na+/K+-ATPase locus the lower mutability at this locus suggests that defective excision repair increases the chance for deletions. Despite an increased cytotoxicity to ENU in 27-1 cells the mutation induction by ENU was the same in 27-1 and wild-type cells at both loci, which suggests that the mutations are mainly induced by directly miscoding adducts (e.g. O-6 alkylguanine), which cannot be removed by CHO cells. As EMS and MMS treatment of 27-1 cells caused an increase in mutation induction at the HPRT locus and a decrease at the Na+/K+-ATPase locus it indicates that these agents induce a substantial fraction of other mutagenic lesions, which can be repaired by wild-type cells. This suggests that O-6 alkylation is not the only mutagenic lesion after treatment with alkylating agents.  相似文献   

14.
XRCC1 operates as a scaffold protein in base excision repair, a pathway that copes with base and sugar damage in DNA. Studies using recombinant XRCC1 proteins revealed that: a C389Y substitution, responsible for the repair defects of the EM-C11 CHO cell line, caused protein instability; a V86R mutation abolished the interaction with POLβ, but did not disrupt the interactions with PARP-1, LIG3α and PCNA; and an E98K substitution, identified in EM-C12, reduced protein integrity, marginally destabilized the POLβ interaction, and slightly enhanced DNA binding. Two rare (P161L and Y576S) and two frequent (R194W and R399Q) amino acid population variants had little or no effect on XRCC1 protein stability or the interactions with POLβ, PARP-1, LIG3α, PCNA or DNA. One common population variant (R280H) had no pronounced effect on the interactions with POLβ, PARP-1, LIG3α and PCNA, but did reduce DNA-binding ability. When expressed in HeLa cells, the XRCC1 variants—excluding E98K, which was largely nucleolar, and C389Y, which exhibited reduced expression—exhibited normal nuclear distribution. Most of the protein variants, including the V86R POLβ-interaction mutant, displayed normal relocalization kinetics to/from sites of laser-induced DNA damage: except for E98K and C389Y, and the polymorphic variant R280H, which exhibited a slightly shorter retention time at DNA breaks.  相似文献   

15.
RNA polymerase II polypeptides present in [35S]methionine-labeled Chinese hamster ovary (CHO) cell extracts have been quantitatively immunoprecipitated with an anti-calf thymus RNA polymerase II serum. Analyses of the immunoprecipitates on sodium dodecyl sulfate polyacrylamide gels indicated that the immunoprecipitated polymerase II of both wild type CHO cells and the alpha-amanitin-resistant mutant Ama1 had polypeptides of molecular weight 214,000, 140,000, 34,000, 25,000, 23,000, 20,500, and 16,500. In heterozygous alpha-amanitin-resistant/alpha-amanitin-sensitive hybrid CHO cells, growth in the presence of alpha-amanitin results in the inactivation of the alpha-amanitin-sensitive RNA polymerase II activity and a compensating increase in the activity of the alpha-amanitin-resistant enzyme. Determination of the rates of synthesis and degradation of RNA polymerase II polypeptides using [35S]methionine labeling and polymerase II immunoprecipitation demonstrated that this increase in activity of alpha-amanitin-resistant polymerase II resulted from a co-ordinate increase in the rate of synthesis of at least three polypeptides of RNA polymerase II. At the same time, there was an enhanced rate of degradation of the alpha-amanitin-inactivated RNA polymerase II polypeptides.  相似文献   

16.
A number of mutant Chinese hamster ovary (CHO) cell lines resistant to the cytotoxic action of alpha-amanitin have been isolated. The alpha-amanitin sensitivity of the different mutant cell lines varied widely, but correlated well with the alpha-amanitin sensitivity of the RNA polymerase II activity in each of these mutant cell lines. In comparison with the RNA polymerase II of wild-type cells, three mutants, Ama39, Ama6, and Amal, required respectively 2- to 3-fold, 8- to 10-fold, and about 800-fold higher concentrations of alpha-amanitin for inhibition of their polymerase II activity. Determination of the equilibrium dissociation constants (KD) for complexes between 0-[3H]methyl-demethyl-gamma-amanitin and RNA polymearse II indicated that differences in alpha-amanitin sensitivity were reflected in differences in the ability of the enzymes to bind amanitin. Hybrids formed by fusion of mutants with cells of wild-type sensitivity contained both mutant and wild-type polymerase II activities. Thus, each of the different alpha-amanitin resistance mutations was expressed co-dominantly. A test for complementation between two of these mutations by measurement of both the alpha-amanitin sensitivity and the [3H]amanitin binding by RNA polymerase II in Ama6 X Amal hybrid cells did not reveal any wild-type RNA polymerase II activity. These data provide evidence that the mutation to alpha-amanitin resistance involves structural changes in the gene coding for the alpha-amanitin binding subunit of RNA polymerase II. These changes appear to account for the alpha-amanitin-resistant phenotypes of these mutant cells.  相似文献   

17.
Carcinoembryonic antigen (CEA) is an oncofoetal cell surface glycoprotein that serves as an important tumour marker for colorectal and some other carcinomas. Its immunoglobulin-like structure places CEA within the immunoglobulin superfamily. CEA functions in several biological roles including homotypic and heterotypic (with other CEA family members) cell adhesion. Cell-cell interaction can be modulated by different factors, e.g., post-translational modifications such as glycosylation. The purpose of this study was to examine whether changes in carbohydrate composition of CEA oligosaccharides can influence homotypic (CEA-CEA) interactions. In order to modulate glycosylation of CEA we used two different glycosylation mutants of Chinese hamster ovary (CHO) cells, Lec2 and Lec8. Lec2 cells should produce CEA with nonsialylated N-glycans, while Lec8 cells should yield more truncated sugar structures than Lec2. Parental CHO (Pro5) cells and the glycosylation deficient mutants were stably transfected with CEA cDNA. All three CEA glycoforms, tested in a solid-phase cell adhesion assay, showed an ability to mediate CEA-dependent cell adhesion, and no qualitative differences in the adhesion between the glycoforms were observed. Thus, it may be assumed that carbohydrates do not play a role in homotypic adhesion, and the interactions between CEA molecules depend solely on the polypeptide structure.  相似文献   

18.
Li H  Chang TW  Tsai YC  Chu SF  Wu YY  Tzang BS  Liao CB  Liu YC 《Mutation research》2005,588(2):118-128
In our previous study, we found that colcemid, an inhibitor of mitotic spindle, promotes UVC-induced apoptosis in Chinese hamster ovary cells (CHO.K1). In this study, a brief treatment of colcemid on cells after but not before UV irradiation could synergistically reduce the cell viability. Although colcemid did not affect the excision of UV-induced DNA damages such as [6-4] photoproducts or cyclobutane pyrimidine dimers, colcemid accumulated the DNA breaks when it was added to cells following UV-irradiation. This colcemid effect required nucleotide excision repair (NER) since the same accumulation of DNA breaks was barely or not detected in two NER defective strains of CHO cells, UV5 or UV24. Furthermore, the colcemid effect was not due to semi-conservative DNA replication or mitosis since the colcemid-caused accumulation of DNA breaks was also seen in non-replicating cells. Moreover, colcemid inhibited rejoining of DNA breaks accumulated by hydroxyurea/cytosine arabinoside following UV irradiation. Nevertheless, colcemid did not affect the unscheduled DNA synthesis as assayed by the incorporation of bromodeoxyuridine. Taken together, our results suggest that colcemid might inhibit the step of ligation of NER pathways.  相似文献   

19.
In our previous study, we found that colcemid, an inhibitor of mitotic spindle, promotes UVC-induced apoptosis in Chinese hamster ovary cells (CHO.K1). In this study, a brief treatment of colcemid on cells after but not before UV irradiation could synergistically reduce the cell viability. Although colcemid did not affect the excision of UV-induced DNA damages such as [6–4] photoproducts or cyclobutane pyrimidine dimers, colcemid accumulated the DNA breaks when it was added to cells following UV-irradiation. This colcemid effect required nucleotide excision repair (NER) since the same accumulation of DNA breaks was barely or not detected in two NER defective strains of CHO cells, UV5 or UV24. Furthermore, the colcemid effect was not due to semi-conservative DNA replication or mitosis since the colcemid-caused accumulation of DNA breaks was also seen in non-replicating cells. Moreover, colcemid inhibited rejoining of DNA breaks accumulated by hydroxyurea/cytosine arabinoside following UV irradiation. Nevertheless, colcemid did not affect the unscheduled DNA synthesis as assayed by the incorporation of bromodeoxyuridine. Taken together, our results suggest that colcemid might inhibit the step of ligation of NER pathways.  相似文献   

20.
The effect of sodium butyrate on the nuclear proteins of two Chinese hamster cell lines (V79 and CHO) was studied. Butyrate treatment induces hyperacetylation of core histones in both cell lines, while H1 histone shows a different behavior. In CHO cells H1 is dephosphorylated following butyrate incubation; V79 do not show any change of H1 subtypes. It seems that H1 response to butyrate treatment is cell type dependent. Using silver staining a group of proteins that could be present in vivo in the nucleo-protein complex was also detected.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号