首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
The concentrations of dioctyldimethyl ammonium chloride (DODMAC) and 1-decanol in isooctane needed to form reverse micelles by phase contact have been determined. The behavior of these reverse micelles in the extraction of aspartic acid, glutamic acid, and threonine was studied by analyzing all of the ionic species in the aqueous phase. The amino acid is extracted from the aqueous phase by exchanging with the Cl(-) counterions of DODMAC in the reverse micelles. The ionic species in the reverse micelles tend toward their undissociated states as the water uptake by the reverse micelles decreases. The effect of 1-decanol on the extraction of the amino acids with two negative charges is due to the change in the water uptake of the reverse micelles. The concentration of DODMAC has no effect on the ion exchange of the amino acid with one negative charge with the Cl(-) counterions of DODMAC in the reverse micelles. Higher molar ratios of decanol to DODMAC favor the selective separation of amino acids with different charge numbers. (c) 1995 John Wiley & Sons, Inc.  相似文献   

2.
At the aim of investigating whether the early rapid phase of enzyme turnover is different in reverse micelles compared with bulk water, the kinetic properties of alpha-chymotrypsin have been studied in reverse micelles formed by sodium bis(2-ethylhexyl)sulfosuccinate in isooctane. Pre-steady state and steady-state kinetic constants, in water and in reverse micelles, have been determined by stopped-flow spectrophotometry for the hydrolysis of two substrates, namely acetyl-L-tryptophan-p-nitrophenyl ester and p-nitrophenyl acetate. It has been shown that, for both substrates, the acylation rate constant (k2) is very much lower in reverse micelles than in water. However, the deacylation rate constant (k3) and the turnover number (kcat) are not significantly changed in reverse micelles with respect to bulk water. Therefore, despite considerable rate changes in the acylation step, deacylation is rate limiting both in water as well as in reverse micelles, under the experimental conditions used.  相似文献   

3.
The influence of medium heterogeneity on the kinetics of the photodynamic effect on native protein lysozyme (Lyso), as well as the interaction of protein and the medium, anionic (SDS) micelles, neutral (Triton X-100) micelles and reversed micelles of AOT, were investigated at pH 8. The interaction between Lyso, Triton X-100 and SDS micelles was quantified by determining the respective associations constant (K(Lyso)). Values were 37 M(-1) for Triton X-100 and 514 M(-1) for SDS, indicating that the Lyso molecule binds Triton X-100 micelles effectively and SDS micelles even more strongly. Time-resolved phosphorescence detection (TRPD) indicates that the protein interacts with O2 (1deltag), with overall rate constants of the order of 10(8) M(-1)/S in direct micelles and 10(7) M(-1)/S in reverse micelles. Apparent reactive rate constants for eosin-sensitized photo-oxidation (singlet molecular oxygen [O2 (1deltag)]-mediated) of the protein were determined through oxygen uptake experiments for the direct micelles, while the fade in the protein fluorescence spectrum upon sensitized irradiation was used in AOT. The results indicate that the O2 (1deltag) attack on the interior of Lyso on amino acid residues, was more effective in leading to a photo-oxidative reaction in SDS and in Triton X-100 at surfactant concentrations < 1 x 10(-2) M than in a homogeneous solution. However, Lyso reactivity reached a maximum when the concentration of micelles was approximately 1 x 10(-5), the same as the protein concentration In AOT reverse micelles, the quenching rate constants decreased > 75% with respect to water. This effect can be attributed to the decrease in accessibility of the amino acid residues to O2 (1deltag).  相似文献   

4.
The extraction of flexibly-structured protein in Aerosol-OT (AOT)/isooctane reverse micelles was investigated. A flexibly-structured lysozyme was prepared by reduction and carboxymethylation of the disulfide bonds in the lysozyme molecule. For a comparison, lysozymes whose surface hydrophobicity was modified by monoacylation of the amino groups were also used. The extraction rate of the flexibly-structured lysozyme into the micellar phase was greater than that of the native and monoacylated lysozymes, although the free energy change of the lysozyme prepared by breaking the disulfide bonds was smaller than that of the lysozymes whose surfaces were monoacylated. Viscosity measurement of the micellar organic phase containing the modified lysozymes indicated that extraction of the flexibly-structured lysozyme changed the micelle–micelle interaction, while measurement of the interfacial tension between the AOT/isooctane and protein aqueous systems showed the flexibly-structured lysozyme to be the most amphiphilic in character. These results indicated that the flexible structure of a protein was more dominant than its surface hydrophobicity for its incorporation into reverse micelles, and that it leads to greater micelle–micelle interaction.  相似文献   

5.
Three liquid phases (viz. aqueous, nonaqueous, and reverse micelles) were scrutinized as medium for attachment of the enzyme Candida rugosa lipase (CRL) onto multiwalled carbon nanotubes (CNTs). The nanotubes were functionalized to attain carboxyl and amino groups on their surfaces before enzyme conjugation. Transmission electron microscopy and Fourier transformation infrared spectroscopic studies were used for characterization of the nanotubes during the course of functionalization. High enzyme loadings associated with the functionalized CNTs were observed when reverse micelles were used as the attachment medium. In addition, high activity in terms of ester synthesis in organic solvents was also observed while using those preparations. The nanobioconjugates prepared using reverse micelles were found to be highly sturdy and exhibited appreciable operational stability of around 95 ± 3% at 20th cycle (in case of carboxylated nanotubes) and 90 ± 5% at 10th cycle (in case of aminated nanotubes) for esterification. This shows the potential application of reverse micelles as the attachment medium for surface active enzymes such as CRL onto CNTs. © 2014 American Institute of Chemical Engineers Biotechnol. Prog., 30:828–836, 2014  相似文献   

6.
A new method is presented to precipitate proteins and amino acids from reverse micelles by dehydrating the micelles with molecular sieves. Nearly complete precipitation is demonstrated for alpha-chymotrypsin, cytochromec, and trytophan from 2-ethylhexyl sodium sulfosuccinate (AOT)/isooctane/water reverse micelle solutions. The products precipitate as a solid powder, which is relatively free of surfactant. The method does not require any manipulation of pH, ionic strength, temperature, pressure, or solvent composition, and is applicable over a broad range of these properties. This general approach is compared with other techniques. This general approach is compared with other techniques for the recovery of biomolecules from reverse micelles. (c) 1994 John Wiley & Sons, Inc.  相似文献   

7.
An enzymatic system for the regeneration of redox cofactors NADH and NADPH was investigated in nanostructural reverse micelles using bacterial glycerol dehydrogenase (GLD) and soluble transhydrogenase (STH). Catalytic conversion of NAD+ to NADH was realized in the sodium dioctylsulfosuccinate (AOT)/isooctane reverse micellar system harboring GLD and a sacrificial substrate, glycerol. The initial rate of NADH regeneration was enhanced by exogenous addition of ammonium sulfate into the reverse micelles, suggesting that NH4+ acts as a monovalent cationic activator. STH was successfully entrapped in the AOT/isooctane reverse micelles as well as GLD and was revealed to be capable of catalyzing the stoichiometric hydrogen transfer reaction between NADP+ and NADPH in reverse micelles. These results indicate that GLD and STH have potential for use in redox cofactor recycling in reverse micelles, which allows the use of catalytic quantities of NAD(P)H in organic media.  相似文献   

8.
The effect of water on the primary photosynthetic activity of purple bacterium Rhodospirillum rubrum was studied in Hexadecane-Tween-Spane (HTS)- and phospholipid (PLC)-reverse micelles. Reverse micelles offer the possibility of modulating the amount of water to which enzymes and multienzymatic complexes are exposed. Fast bacteriochlorophyll (BChl) fluorescence induction kinetics and reaction centre absorption changes at 820 nm were used as an assay for the functional transfer of bacterial cells into HTS-reverse micelles and bacterial photosynthetic complexes (BPC) into PLC-reverse micelles. Both the bacterial cells and BPC showed an increase in the rate of primary photosynthetic activity by increasing the concentration of water in the reverse micelles. The bacterial cells could be kept viable for many hours in HTS-reverse micelles in presence of 6% (v/v) water. NMR studies indicated that the photosynthetic activity was affected by the availability of water in reverse micelles. The bacterial cells in HTS or BPC in PLC reverse micelles could be used to further understand the influence of water on the organisation and function of photosynthetic complexes. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

9.
alpha-Chymotrypsin (CT), spin-labeled at the active site by using an acylating label which constitutes a substrate for this protein, has been investigated in reverse micelles formed by AOT in isooctane. The electron spin resonance spectra provided information on conformation, dynamics and deacylation activity. The dynamics of the label bound to CT appears to be more hindered in reverse micelles than in aqueous solution, probably owing to the effect of the micellar environment on protein conformation. The deacylation rate in reverse micelles does not show the characteristic bell-shaped dependence on water content which is generally found for CT enzymatic activity.  相似文献   

10.
Solubilisate exchange between reverse micelles must take place before any reaction inside reverse micelles occurs if the reactants are confined to the aqueous micellar core. When the interacting species are 2 small molecules or one small molecule and one macromolecule, it has been shown that the exchange is faster than the typical turnover of an enzymatic reaction. The study of the interaction between 2 macromolecules (trypsin and soybean trypsin inhibitor) in reverse micelles carried out in this work reveals that the exchange between these macromolecule-containing reverse micelles slows down by a thousand times and the limiting-step in the exchange, the fusion, by 10(6) times. Both reverse micellar size (omega 0 = [water]/[surfactant]) and temperature affected the rate of the fusion process. A hypothesis for the proposed active role of macromolecules in the exchange process is also given.  相似文献   

11.
The influence of ethylene glycol (EG) on the kinetics of hydrolysis of N-alpha-benzoyl-L-arginine ethyl ether catalyzed by trypsin encapsulated in sodium bis-(2-ethylhexyl)sulfosuccinate (AOT)-based reverse micelles was studied at different temperatures. Ethylene glycol was shown to shift the range of the trypsin activity in the reverse micelles towards higher temperatures. Infrared spectroscopy showed a stabilizing effect of EG on the secondary structure of the protein in the system of reverse micelles. Electron spin resonance spectroscopy showed that the solubilized protein affected the interactions of EG with the polar head groups of AOT and altered the rigidity of the micellar matrix. The results indicate that EG increases the thermostability of the solubilized enzyme in microemulsion media by two mechanisms.  相似文献   

12.
We report studies on the interaction of α-melanocyte stimulating hormone (α-MSH) and a synthetic analogue (MSH-I) with reverse micelles prepared from the amphiphilic sodium bis(2-ethylhexyl)sulfosuccinate in isooctane. The tripeptide lysyl-tryptophyl- lysine and the isolated amino acid tryptophan were also investigated as simpler compounds interacting with the micelles. Tryptophan fluorescence parameters (spectral position of emission band, anisotropy, and lifetime decay) demonstrated that in the presence of reverse micelles the environment around the fluorophore is less polar and more rigid than bulk water. Those parameters are sensitive to the changes induced in the micelles by the presence of water. In large micelles having a water/amphiphile molar ratio above 10, the modifications detected by fluorescence are small and the location of the fluorophore is not affected by a further increase in the concentration of the bulk water. The results, with additional support from quenching experiments, indicated that the different compounds occupy different positions in the large reverse micelles, but in any case they are in the interface region, without dispersing into the bulk water. From decay associated spectra, conformations were identified showing different degrees of tryptophan exposition to polar and nonpolar local environments. The conformation related to the long lifetime has its tryptophan more exposed to water while that associated to the intermediate lifetime has that residue stabilized in nonpolar media. The native hormone α-MSH and the analogue MSH-I present similar conformations in dry micelles. However, in buffer and in the large hydrated micelles, differences in conformations are evident, and could be related to the different physiological activity of the peptides. Received: 4 August 1999 / Revised version: 17 December 1999 / Accepted: 4 January 2000  相似文献   

13.
The enzymatic reaction by aerosol-OT (AOT)reverse micelles containing lipase in supercritical ethane was examined and is the focus of this paper. The reverse micelles were formed under various conditions at which their hydrodynamic diameters were measured by using the dynamic light scattering spectrophotometer. The reverse micelles in supercritical ethane were formed in the range of Wo (water/surfactant) less than six. The hydrodynamic diameter of the reverse micelles ranged from 2 to 5 microm. The hydrolysis reaction of triolein by the lipase in reverse micelles was also examined. The observations indicate that lipase in AOT reverse micelles in supercritical ethane showed activity. The conversion of triolein increased with the increase in size of reverse micelles and Wo, and reached its maximum near the critical temperature. Moreover, although the conversion of triolein increased with pressure, it was independent of pressure near the critical temperature.  相似文献   

14.
Reverse micelles formed by soybean lecithin in isooctane were used as a reaction medium for both the lipase-catalyzed hydrolysis as well as the synthesis of lipids. Neither reaction appears to follow Michaelis-Menten kinetics and it is suggested that the rates are diffusion controlled. The hydrolysis of para-nitrophenylpalmitate (PNPP) and, in particular, the pH-dependency of the lipase-catalyzed hydrolysis was then examined. The highest rate of reaction occurred at pHopt = 5–5.5, which was the same in water and lecithin reverse micelles, as well as in reverse micelles formed by bis(2-ethylhexyl)-sulfosuccinate (AOT) in isooctane. The dependence of the reaction rate on the water content of the micellar system was investigated for the same reaction. The maximal rate was found at an extremely low water content, i.e. at Wo = 2.2 (Wo = [H2O]/[Lecithin]). The temperature stability of the lipase in lecithin reverse micelles was also studied and found to be greater than in aqueous solutions. Studies of the dependence of the relative initial velocity on temperature have shown that the highest rate in reverse micelles is obtained at 60d`C.  相似文献   

15.
反胶团萃取是近年发展起来的分离和纯化生化物质的新方法,本文介绍了反胶团萃取蛋白质技术的原理和机制、影响反胶团中蛋白质稳定性的因素,改进的蛋白质反萃取工艺,反胶团的酶动力学研究以及反胶团萃取技术的研究展望。  相似文献   

16.
FTIR study of horseradish peroxidase in reverse micelles   总被引:2,自引:0,他引:2  
Fourier transform infrared (FTIR) method was used to study the secondary structures of horseradish peroxidase (HRP) in aqueous solution and in reverse micelles for the first time. Results indicated that the structure of HRP in sodium bis(2-ethylhexy)sulfosuccinate (AOT) reverse micelles was close to that in aqueous solution. In cetyltrimethylammonium bromide (CTAB) and sodium dodecylfate (SDS) reverse micelles the position of some bands changed. Results indicated that the secondary structure had a close relationship with the surfactant species of the reverse micelles. Among the three types of reverse micelles, the system of AOT reverse micelles was probably the most beneficial reaction media to HRP.  相似文献   

17.
Edible oils contain minor surface active components that form micro-heterogeneous environments, such as reverse micelles, which can alter the rate and direction of chemical reactions. However, little is known about the role of these micro-heterogeneous environments on lipid oxidation of bulk oil. Our objective was to evaluate the ability of water, cumene hydroperoxide, oleic acid, and phosphatidylcholine to influence the structure of reverse micelles in a model oil system: sodium bis(2-ethylhexyl) sulfosuccinate (aerosol-OT; AOT) in n-hexadecane. The influence of reverse micelle structure on iron catalyzed lipid oxidation was determined using methyl linolenate as an oxidizable substrate. The size and shape of the reverse micelle were investigated by small-angle x-ray scattering, and water contents was determined by Karl Fischer titrations. Lipid hydroperoxides and thiobarbituric acid reactive substances were used to follow lipid oxidation. Our results showed that AOT formed spherical reverse micelles in hexadecane. The size of the reverse micelles increased with increased water or phosphatidylcholine concentration, but decreased upon addition of cumene hydroperoxide or oleic acid. Iron catalyzed oxidation of methyl linolenate in the reverse micelle system decreased with increasing water concentration. Addition of phosphatidylcholine into the reverse micelle systems decreased methyl linolenate oxidation compared to control and reverse micelles with added oleic acid. These results indicate that water, cumene hydroperoxide, oleic acid, and phosphatidylcholine can alter reverse micelle size and lipid oxidation rates. Understanding how these compounds influence reverse micelle structure and lipid oxidation rates could provide information on how to modify bulk oil systems to increase oxidative stability.  相似文献   

18.
Chen WY  Lee YW  Lin SC  Ho CW 《Biotechnology progress》2002,18(6):1443-1446
This study extended works on effects of solute on the percolation of reverse micelles to the effects of interactions between protein and surfactants on protein refolding by reverse micelles. The changes in percolation behavior were identified and attributed to the position of solutes in the core aqueous phase and the interaction between the solute and the surfactants. The percolation behavior of reverse micelles with solutes was related to protein renaturation and the reverse micelle. This study aims to highlight the involvement of the interface and the interaction of the protein with the surfactant during protein refolding. Ribonuclease A and AOT reverse micelles together constitute a model system considered here. The systemic parameters of the reverse micelle, water content (W(o)) and pH value, were applied to modify the interaction between the denatured protein molecules and the surfactant interface. The interactions and the locations of the protein molecules were determined from changes in percolation temperature measured by conductivity. The percolation and protein activity show that a stronger interaction of the protein molecules with surfactant corresponds to superior recovery of protein activity. The investigation concludes that the refolding of protein by reverse micelles is not only facilitated by the isolation of reverse micelles but also by the interaction due to the interface of the reverse micelle.  相似文献   

19.
Kinetic model for enzymatic hydrolysis in reverse micelles   总被引:2,自引:0,他引:2  
A bound water model is developed for the interpretation of kinetic data of b-galactosidase in reverse micelles. Assessing the kinetic parameters of p-nitrophenyl-b-D-galactopyranoside hydrolysis in aqueous and reverse micellar system reveals that the major effect on hydrolytic rate is owing to the amount of free water in reverse micelles, not the enzyme molecules' structural change.  相似文献   

20.
Enzymatic hydrolysis of microcrystalline cellulose in reverse micelles   总被引:2,自引:0,他引:2  
The activities of cellulases from Trichoderma reesei entrapped in three types of reverse micelles have been investigated using microcrystalline cellulose as the substrate. The reverse micellar systems are formed by nonionic surfactant Triton X-100, anionic surfactant Aerosol OT (AOT), and cationic surfactant cetyltrimethyl ammonium bromide (CTAB) in organic solvent media, respectively. The influences of the molar ratio of water to surfactant omega0, one of characteristic parameters of reverse micelles, and other environmental conditions including pH and temperature, on the enzymatic activity have been studied in these reverse micellar systems. The results obtained indicate that these three reverse micelles are more effective than aqueous systems for microcrystalline cellulose hydrolysis, and cellulases show "superactivity" in these reverse micelles compared with that in aqueous systems under the same pH and temperature conditions. The enzymatic activity decreases with the increase of omega0 in both AOT and Triton X-100 reverse micellar systems, but reaches a maximum at omega0 of 16.7 for CTAB reverse micelles. Temperature and pH also influence the cellulose hydrolysis process. The structural changes of cellulases in AOT reverse micelles have been measured by intrinsic fluorescence method and a possible explanation for the activity changes of cellulases has been proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号