首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
PKA type I and type II are activated in Aplysia neurons by stimulation with serotonin (5-HT), which causes long-term facilitation (LTF). The proteolysis of the regulatory subunit (R) is thought important for the persistent activation of PKA, which is necessary to produce LTF. In this study, we report that the type I regulatory subunit (RI) and type II regulatory subunit (RII) are differentially regulated by proteolytic cleavage. RI, but not RII, was selectively cleaved after 5-HT treatment for 2h in Aplysia neurons. Interestingly, the proteasome inhibitor MG132 inhibited the cleavage of RI caused by 5-HT treatment in Aplysia neuron. Besides extracts from Aplysia ganglia treated with 5-HT cleaved (35)S-labeled RI synthesized in vitro, but not (35)S-labeled RII. This suggests that 5-HT induces the activation state of RI-specific proteolytic cleavage.  相似文献   

2.
Malaria symptoms occur during Plasmodium falciparum development into red blood cells. During this process, the parasites make substantial modifications to the host cell in order to facilitate nutrient uptake and aid in parasite metabolism. One significant alteration that is required for parasite development is the establishment of an anion channel, as part of the establishment of New Permeation Pathways (NPPs) in the red blood cell plasma membrane, and we have shown previously that one channel can be activated in uninfected cells by exogenous protein kinase A. Here, we present evidence that in P. falciparum-infected red blood cells, a cAMP pathway modulates anion conductance of the erythrocyte membrane. In patch-clamp experiments on infected erythrocytes, addition of recombinant PfPKA-R to the pipette in vitro, or overexpression of PfPKA-R in transgenic parasites lead to down-regulation of anion conductance. Moreover, this overexpressing PfPKA-R strain has a growth defect that can be restored by increasing the levels of intracellular cAMP. Our data demonstrate that the anion channel is indeed regulated by a cAMP-dependent pathway in P. falciparum-infected red blood cells. The discovery of a parasite regulatory pathway responsible for modulating anion channel activity in the membranes of P. falciparum-infected red blood cells represents an important insight into how parasites modify host cell permeation pathways. These findings may also provide an avenue for the development of new intervention strategies targeting this important anion channel and its regulation.  相似文献   

3.
4.
5.
6.
Pantano S  Zaccolo M  Carloni P 《FEBS letters》2005,579(12):2679-2685
The second messenger cyclic Adenosine MonoPosphate (cAMP) mediates many biological process by interacting with structurally conserved nucleotide binding domains (cNBD's). Here, we use molecular dynamics simulations on RIIbeta-PKA, one of the best characterized members of the cNBD family, in presence and absence of cAMP. The results of our calculations are fully consistent with the available experimental data and suggest that the key factor of the cAMP allosteric mechanism in cNBDS's is the increased flexibility of the protein upon ligand release along with a mechanical coupling between helical segments. In addition, our calculations provide a rationale for the experimentally observed cAMP selective binding to PKA.  相似文献   

7.
The yeast two-hybrid screen has been used to identify potential regions of interaction of the largest regulatory subunit, , of phosphorylase kinase (PhK) with two fragments of its protein substrate, glycogen phosphorylase b (Phb). One fragment, corresponding to residues 17-484 (PhbN"), contained the regulatory domain of the protein, but in missing the first 16 residues was devoid of the sole phosphorylation site of Phb, Ser14; the second fragment corresponded to residues 485-843 (PhbC) and contained the catalytic domain of Phb. Truncation fragments of the subunit were screened for interactions against these two substrate fragments. PhbC was not found to interact with any constructs; however, PhbN" interacted with a region of (residues 864-1014) that is near the phosphorylatable region of that subunit. PhbN" was also screened for interactions against a variety of fragments of the catalytic subunit of PhK; however, no interactions were detected, even with fulllength . Our results support the idea that amino acid residues proximal to the convertible serine of Phb are important for its specific interaction with the catalytic subunit of PhK, but that regions distinct from the convertible serine residue of Phb and from the catalytic domain of PhK may also be involved in the interaction of these two proteins.  相似文献   

8.
The major cAMP receptors in eukaryotes are the regulatory (R) subunits of PKA, an allosteric enzyme conserved in fungi through mammals. While mammals have four R-subunit genes, Saccharomyces cerevisiae has only one, Bcy1. To achieve a molecular understanding of PKA activation in yeast and to explore the evolution of cyclic-nucleotide binding (CNB) domains, we solved the structure of cAMP-bound Bcy1(168-416). Surprisingly, the relative orientation of the two CNB domains in Bcy1 is very different from mammalian R-subunits. This quaternary structure is defined primarily by a fungi-specific sequence in the hinge between the αB/αC helices of the CNB-A domain. The unique interface between the two CNB domains in Bcy1 defines the allosteric mechanism for cooperative activation of PKA by cAMP. Some interface motifs are isoform-specific while others, although conserved, play surprisingly different roles in each R-subunit. Phylogenetic analysis shows that structural differences in Bcy1 are shared by fungi of the subphylum Saccharomycotina.  相似文献   

9.
MOTIVATION: Favorable interaction between the regulatory subunit of the cAMP-dependent protein kinase (PKA) and a peptide in A-kinase anchoring proteins (AKAPs) is critical for translocating PKA to the subcellular sites where the enzyme phosphorylates its substrates. It is very hard to identify AKAPs peptides binding to PKA due to the high sequence diversity of AKAPs. RESULTS: We propose a hierarchical and efficient approach, which combines molecular dynamics (MD) simulations, free energy calculations, virtual mutagenesis (VM) and bioinformatics analyses, to predict peptides binding to the PKA RIIα regulatory subunit in the human proteome systematically. Our approach successfully retrieved 15 out of 18 documented RIIα-binding peptides. Literature curation supported that many newly predicted peptides might be true AKAPs. Here, we present the first systematic search for AKAP peptides in the human proteome, which is useful to further experimental identification of AKAPs and functional analysis of their biological roles.  相似文献   

10.
cAMP-dependent protein kinase (PKA) forms an inactive heterotetramer of two regulatory (R; with two cAMP-binding domains A and B each) and two catalytic (C) subunits. Upon the binding of four cAMP molecules to the R dimer, the monomeric C subunits dissociate. Based on sequence analysis of cyclic nucleotide-binding domains in prokaryotes and eukaryotes and on crystal structures of cAMP-bound R subunit and cyclic nucleotide-free Epac (exchange protein directly activated by cAMP), four amino acids were identified (Leu203, Tyr229, Arg239 and Arg241) and probed for cAMP binding to the R subunits and for R/C interaction. Arg239 and Arg241 (mutated to Ala and Glu) displayed no differences in the parameters investigated. In contrast, Leu203 (mutated to Ala and Trp) and Tyr229 (mutated to Ala and Thr) exhibited up to 30-fold reduced binding affinity for the C subunit and up to 120-fold reduced binding affinity for cAMP. Tyr229Asp showed the most severe effects, with 350-fold reduced affinity for cAMP and no detectable binding to the C subunit. Based on these results and structural data in the cAMP-binding domain, a switch mechanism via a hydrophobic core region is postulated that is comparable to an activation model proposed for Epac.  相似文献   

11.
12.
The cAMP-dependent protein kinase (PKA) plays key roles in the control of various aspects of eukaryotic cellular activities by phosphorylating several proteins and is multifunctional in nature. In the case of frog, Xenopus tropicalis, a gene encoding the PKA catalytic alpha subunit has been identified which encodes a single protein. Here we report the occurrence of N-terminal alternative splicing events in X. tropicalis tadpole that, in addition to generating a myristoylatable isoforms, also generate the non-myristoylated variant of the catalytic alpha subunit as has been reported in various other organisms. In addition to the already characterized exon 1, the 5′ untranslated region and first intron actually contains one more other exon, that is alternatively spliced on to exon 2 at the 5′ end of the pre-mRNA. This N-terminal alternative splicing occurs in combination with already characterized all internal exons. Thus, X. tropicalis tadpole expresses at least two different isoforms of the catalytic alpha subunit of PKA. The significance of this structural diversity in the family of PKA catalytic subunits is discussed.  相似文献   

13.
The 55-kDa TNFR1 (type I tumor necrosis factor receptor) can be released to the extracellular space by two mechanisms, the proteolytic cleavage and shedding of soluble receptor ectodomains and the release of full-length receptors within exosome-like vesicles. We have shown that the brefeldin A-inhibited guanine nucleotide exchange protein BIG2 associates with TNFR1 and selectively modulates the release of TNFR1 exosome-like vesicles via an ARF1- and ARF3-dependent mechanism. Here, we assessed the role of BIG2 A kinase-anchoring protein (AKAP) domains in the regulation of TNFR1 exosome-like vesicle release from human vascular endothelial cells. We show that 8-bromo-cyclic AMP induced the release of full-length, 55-kDa TNFR1 within exosome-like vesicles via a protein kinase A (PKA)-dependent mechanism. Using RNA interference to decrease specifically the levels of individual PKA regulatory subunits, we demonstrate that RIIbeta modulates both the constitutive and cAMP-induced release of TNFR1 exosome-like vesicles. Consistent with its AKAP function, BIG2 was required for the cAMP-induced PKA-dependent release of TNFR1 exosome-like vesicles via a mechanism that involved the binding of RIIbeta to BIG2 AKAP domains B and C. We conclude that both the constitutive and cAMP-induced release of TNFR1 exosome-like vesicles occur via PKA-dependent pathways that are regulated by the anchoring of RIIbeta to BIG2 via AKAP domains B and C. Thus, BIG2 regulates TNFR1 exosome-like vesicle release by two distinct mechanisms, as a guanine nucleotide exchange protein that activates class I ADP-ribosylation factors and as an AKAP for RIIbeta that localizes PKA signaling within cellular TNFR1 trafficking pathways.  相似文献   

14.
The fluorescence of Trp-226 in the regulatory subunit of bovine type II cAMP-dependent protein kinase is unaffected by the binding of cAMP, but is quenched by the binding of 2'-dansyl-cAMP (DNS-cAMP). Up to 67% of the fluorescence of Trp-226 can be quenched by resonant energy transfer to the DNS-cAMP bound to the first site, and 96% of the fluorescence can be quenched by saturating both sites with DNS-cAMP. The observed efficiencies of energy transfer gave a distance of 16 A between Trp-226 and the DNS-cAMP bound at the first site and a distance of 12.7 A between Trp-226 and the DNS-cAMP bound at second site. The fluorescence of Trp-226 was suppressed by incubation of RII with the self-complementary octanucleotide TGACGTCA (CRE) due to binding of the oligonucleotide to RII. A detailed study of the binding equilibrium showed that each RII(cAMP)2 molecule binds 1 molecule of CRE with Kd = 80 nM. The corresponding Kd value for cAMP-depleted RII was found to be 25-fold higher. RII was also found to bind randomly selected DNA fragments with an average Kd value much higher than that of CRE. These observations show for the first time that the binding of oligonucleotide to RII is cAMP-enhanced and sequence-selective.  相似文献   

15.
Genetic and structural analysis of the alpha chain polypeptides of heterotrimeric G proteins defines functional domains for GTP/GDP binding, GTPase activity, effector activation, receptor contact and beta gamma subunit complex regulation. The conservation in sequence comprising the GDP/GTP binding and GTPase domains among G protein alpha subunits readily allows common mutations to be made for the design of mutant polypeptides that function as constitutive active or dominant negative alpha chains when expressed in different cell types. Organization of the effector activation, receptor and beta gamma contact domains is similar in the primary sequence of the different alpha subunit polypeptides relative to the GTP/GDP binding domain sequences. Mutation within common motifs of the different G protein alpha chain polypeptides have similar functional consequences. Thus, what has been learned with the Gs and Gi proteins and the regulation of adenylyl cyclase can be directly applied to the analysis of newly identified G proteins and their coupling to receptors and regulation of putative effector enzymes.  相似文献   

16.
Limited trypsin digestion of type I cAMP-dependent protein kinase holoenzyme results in a proteolytic-resistant Delta(1-72) regulatory subunit core, indicating that interaction between the regulatory and catalytic subunits extends beyond the autoinhibitory site in the R subunit at the NH(2) terminus. Sequence alignment of the two R subunit isoforms, RI and RII, reveals a significantly sequence diversity at this specific region. To determine whether this sequence diversity is functionally important for interaction with the catalytic subunit, specific mutations, R133A and D328A, are introduced into sites adjacent to the active site cleft in the catalytic subunit. While replacing Arg(133) with Ala decreases binding affinity for RII, interaction between the catalytic subunit and RI is not affected. In contrast, mutant C(D328A) showed a decrease in affinity for binding RI while maintaining similar affinities for RII as compared with the wild-type catalytic subunit. These results suggest that sequence immediately NH(2)-terminal to the consensus inhibition site in RI and RII interacts with different sites at the proximal region of the active site cleft in the catalytic subunit. These isoform-specific differences would dictate a significantly different domain organization in the type I and type II holoenzymes.  相似文献   

17.
The regulatory subunit of phosphatidylinositol 3-kinase, p85, contains a number of well defined domains involved in protein-protein interactions, including an SH3 domain and two SH2 domains. In order to investigate in detail the nature of the interactions of these domains with each other and with other binding partners, a series of deletion and point mutants was constructed, and their binding characteristics and apparent molecular masses under native conditions were analyzed. The SH3 domain and the first proline-rich motif bound each other, and variants of p85 containing the SH3 and BH domains and the first proline-rich motif were dimeric. Analysis of the apparent molecular mass of the deletion mutants indicated that each of these domains contributed residues to the dimerization interface, and competition experiments revealed that there were intermolecular SH3 domain-proline-rich motif interactions and BH-BH domain interactions mediating dimerization of p85alpha both in vitro and in vivo. Binding of SH2 domain ligands did not affect the dimeric state of p85alpha. Recently, roles for the p85 subunit have been postulated that do not involve the catalytic subunit, and if p85 exists on its own we propose that it would be dimeric.  相似文献   

18.
19.
In kidney, Na+, K+-ATPase is an oligomer (alphabeta gamma) with equimolar amounts of essential alpha and beta subunits and one small hydrophobic FXYD protein (gamma subunit). This report describes gamma subunit as an activator of pig kidney outer medulla Na+, K+-ATPase in aqueous medium. The effects of gamma subunit on Na+, K+-ATPase were dose-dependent and preincubation-dependent. Changes in alphabeta/gamma stoichiometry did not alter Km1 for ATP, and slightly increased Km2, but Vmax was increased at both catalytic and regulatory sites. Hydroxylamine treatment of enzyme phosphorylated by ATP (E-P), in the presence of additional gamma subunit, revealed that 52% of the E-P accumulation was not via acyl-phosphate formation. The gamma subunit was phosphorylated by endogenous kinases and by commercial catalytic subunit of protein kinase A (PKA). Additionally, we demonstrated that PKA phosphorylation of gamma subunit increased its capacity to stimulate ATP hydrolysis. These results suggest that gamma subunit can act as an intrinsic Na+, K+-ATPase regulator in kidney.  相似文献   

20.
Complementary DNA clones for the regulatory subunit RI beta of cAMP-dependent protein kinases were isolated from a human testis cDNA library using a mouse RI beta cDNA probe. One clone 2.4 kilobases (kb) in length contained an open reading frame of 1137 bases, and encoded a protein of 379 amino acids (excluding the initiator methionine). The human RI beta protein was one amino acid shorter than the corresponding protein in mouse and rat. The nucleotide similarity to mouse and rat sequences was 85.6% and 84.8%, respectively, while the amino acid similarity was 97.6% and 97.3%, respectively. Northern blot analyses revealed a 2.7 kb mRNA in human tissues and a 2.8 kb mRNA in mouse tissues. Both mouse and human RI beta mRNA were found to be expressed in most tissues, and not restricted to brain and testis as reported by others.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号