首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
Summary Pieces of hairy skin tissue of fetal rat were transplanted into the anterior eye chamber of adult rats. The ability of autonomic and sensory nerve fibers from the host iris to innervate the grafted skin tissue was immunohistochemically and enzyme-histochemically examined using antisera against tyrosine hydroxylase (TH), substance P (SP), calcitonin gene-related peptide (CGRP) and vasoactive intestinal peptide (VIP), and a reaction medium for acetylcholinesterase (AchE). The grafted tissue was successfully implanted and connected with the host iris. Epidermis, dermis, subcutaneous tissue, hairs, hair follicles, sebaceous glands, and piloerector muscles developed in the graft. Two weeks after transplantation, TH-, SP-, and CGRP-immunoreactive fibers were observed in association with the blood vessels in the graft. Four weeks after transplantation, TH-immunoreactive fibers were distributed in the piloerector muscles, whereas SP-and CGRP-immunoreactive fibers were present around the hair follicles. VIP-immunoreactive and AchE-positive fibers were restricted to the host iris at all survival times. These results suggest that the outgrowth of autonomic and sensory nerve fibers from the host iris show target specificity for the grafted skin tissue.  相似文献   

2.
Summary Pieces of fetal midbrain raphe tissue were transplanted into the third ventricle or the ventral hypothalamic region near the suprachiasmatic nucleus (SCN) of adult host rats that had previously been denervated by treatment with 5,6-dihydroxytryptamine. The ability of grafted serotonin neurons to reinnervate the SCN in the host rats was studied by means of immunohistochemistry 1 and 3 months after transplantation. In both the intraventricular and intraparenchymal transplant experiments, reinnervation by outgrowing serotonin fibers was observed in the hypothalamus of host rats at 1 and 3 months after surgery. At both survival periods, there was no abundant arborization of serotonin fibers in the SCN, while the preoptic and periventricular areas of the host rats displayed a pattern of serotonergic innervation resembling that in normal (untreated) rats. It is suggested that within the SCN the regenerating serotonin fibers may be exposed to an inhibitory environment.  相似文献   

3.
Summary The anterograde tracer Phaseolus vulgaris-leucoagglutinin was injected into the medial nucleus of the solitary tract and into the rostral dorsomedial medulla. A sequential two-color immunoperoxidase staining was accomplished in order to demonstrate the co-distribution of presumed terminal axons with chemically distinct neurons in the dorsal raphe nucleus of the midbrain central gray, i.e., B7 serotonergic and A10dc dopaminergic neurons. Black-stained efferent fibers from the medial nucleus of the solitary tract and the rostral dorsomedial medulla intermingled with brown-stained serotonergic (5-hydroxytryptamine-immunoreactive) or dopaminergic (tyrosine hydroxylase-immunoreactive) neurons. Light microscopy revealed that the black-stained efferent axons exhibited numerous en passant and terminal varicosities that were often found in close apposition to brown-stained serotonergic and dopaminergic somata, and to proximal and distal dendrites and dendritic processes. The close association of immunoreactive elements suggests the presence of axo-somatic and axodendritic synaptic contacts of medullary fibers with serotonergic and dopaminergic neurons in the dorsal raphe nucleus. These projections could be involved in the modulation of dorsal raphe neurons, depending on the autonomic status of an animal.  相似文献   

4.
The constituent elements of the gills of Aplysia kurodai and A. juliana were examined for the presence of biogenic amines using histochemical, immunocytochemical, and HPLC techniques. Aminergic elements were revealed by glyoxylic acid-induced fluorescence in the branchial nerve, branchial ganglion, branchial vessels, and pinnules in both species. Three types of fluorescent cells were found in the neural plexus of the gill in each species. Two of them might be sensory neurons. Although HPLC analysis showed the presence of serotonin and dopamine in all gill structures including fluorescent neural elements, there were regional differences in concentrations of the monoamines. It was noted in the pinnules that there was a much higher concentration of dopamine than serotonin. Serotonin immunocytochemistry revealed neural processes which were immunoreactive to antiserotonin antibody, but serotonin immunoreactivity could not be found in a population of branchioganglionic neuron (BGN) somata. Serotonergic elements in the ganglion may be processes of the central ganglion, while dopaminergic elements may be processes of neurons in the neural plexus, located beyond the branchial ganglion. BGNs were activated by bath-applied dopamine and serotonin. These results suggest that dopaminergic sensory inputs from the neural plexus and serotonergic descending inputs from the abdominal ganglion may be among the inputs received by BGNs. It was found that serotonin depressed excitatory junctional potentials in muscle cells of the efferent branchial vessel, which were induced by an identified neuron of the abdominal ganglion. The aminergic cellular organization of the gill may involve serotonergic presynaptic-inhibitory fibers arising from the abdominal ganglion.  相似文献   

5.
Female mosquitoes depend on blood to complete their reproductive cycle and rely mainly on chemosensory systems to obtain blood meals. An immunocytochemical analysis reveals a number of serotonin-immunoreactive neurons that innervate the chemosensory systems, suggesting a potential role of serotonin in modulating chemosensory processes. In the primary olfactory system, we identify a single ipsilateral centrifugal neuron with arborizations in higher brain centers; the varicosities of this neuron display volumetric changes in response to both blood feeding and during a circadian rhythm. Six to eight pairs of serotonin-immunoreactive neurons are identified in the primary gustatory neuropil, including the subesophageal ganglion and tritocerebrum. The peripheral chemosensory organs, i.e. the antenna, the maxillary palp and the labium, are described as having extensive serotonergic neurohemal plexi. In addition, we describe the presence of serotonin-immunoreactive fibers in the mechanosensory Johnston's organ. Taking these results together, we discuss the potential role of serotonin as a neuromodulator in the chemosensory system of disease vector mosquitoes.  相似文献   

6.
Summary In the suprachiasmatic nucleus (NSC) of hibernating and non-hibernating ground squirrels, the distribution of serotonin-immunoreactive (5HT-IR) fibers was studied by the use of the peroxidase-antiperoxidase technique. The cytology of perikarya giving rise to these suprachiasmatic 5HT-IR fibers was investigated in the anterior raphe nuclei. Differences in the immunoreactivity of suprachiasmatic fibers between hibernating and non-hibernating ground squirrels were determined by digital image analysis. The cellular activity was determined densitometrically after RNA-staining in anterior raphe neurons and suprachiasmatic perikarya. Abundant 5HT-IR fibers were observed in the medial and ventromedial portions of the NSC. Frequently, the fibers were found in close contact with perikarya of suprachiasmatic neurons. The central portion of the nucleus and the surrounding hypothalamic areas contained only a few scattered 5HT-IR fibers. Inside the raphe nuclei, 5HT-IR fibers and perikarya formed a dense network. In hibernating ground squirrels, the immunoreactivity to serotonin was approximately 45% higher than in non-hibernating controls. This difference is in accordance with signs of higher neuronal activity (40% higher RNA-content, 20% larger cell nuclei) in 5HT-IR perikarya of the raphe nucleus and the persisting activity of the NSC during hibernation; the activity of other brain regions dropped conspicuously in torpid animals.Supported by the Deutsche Forschungsgemeinschaft (Nu 36/2-1)  相似文献   

7.
A fluorescence histochemical and electron microscopic study of the monoaminergic cell groups in the squirrel monkey and Rhesus monkey brains has revealed the direct apposition of blood vessels to perikarya and dendrites of monoaminergic neurons. Capillaries and small arterioles or venules, ranging from 8-50 microns in diameter, showed perikarya and dendrites abutting the basement membrane without evidence of glial interposition. This neuronal-vascular relationship was present in 20% to 30% of the small vessels in the serotonergic nuclei raphe dorsalis and centralis superior and in the noradrenergic locus coeruleus. Such contacts were clearly present but observed less frequently in the dopaminergic substantia nigra pars compacta and in the serotonergic nuclei raphe obscurus, pallidus, magnus, and pontis. We postulate that monoamine-containing neurons apposed to blood vessels in certain regions of the brain may be influenced directly by hormones or other substances in blood.  相似文献   

8.
Abstract: Apolipoprotein E (apoE)-deficient mice provide a useful system for studying the role of apoE in neuronal maintenance and repair. Previous studies revealed specific memory impairments in these mice that are associated with presynaptic derangements in projecting forebrain cholinergic neurons. In the present study we examined whether dopaminergic, noradrenergic, and serotonergic projecting pathways of apoE-deficient mice are also affected and investigated the mechanisms that render them susceptible. The densities of nerve terminals of forebrain cholinergic projections were monitored histochemically by measurements of acetylcholinesterase activity, whereas those of the dopaminergic nigrostriatal pathway, the noradrenergic locus coeruleus cortical projection, and the raphe-cortical serotonergic tract were measured autoradiographically using radioligands that bind specifically to the respective presynaptic transporters of these neuronal tracts. The results obtained revealed that synaptic densities of cholinergic, noradrenergic, and serotonergic projections in specific brain regions of apoE-deficient mice are markedly lower than those of controls. Furthermore, the extent of presynaptic derangement within each of these tracts was found to be more pronounced the further away the nerve terminal is from its cell body. In contrast, the nerve terminal density of the dopaminergic neurons that project from the substantia nigra to the striatum was unaffected and was similar to that of the controls. The rank order of these presynaptic derangements at comparable distances from the respective cell bodies was found to be septohippocampal cholinergic > nucleus basalis cholinergic > locus coeruleus adrenergic > raphe serotonergic ? nigrostriatal dopaminergic, which interestingly is similar to that observed in Alzheimer's disease. These results suggest that two complementary factors determine the susceptibility of brain projecting neurons to apoE deficiency: pathway-specific differences and the distance of the nerve terminals from their cell body.  相似文献   

9.
Summary The distributional patterns of serotonin-, luteinizing hormone-releasing hormone (LHRH)-, oxytocin (OXT)- and vasopressin (VP)-immunoreactive nerve fibers were studied in the subcommissural organ (SCO) of the dog by use of the peroxidase-antiperoxidase technique.Abundant serotonergic and moderate numbers of peptidergic nerve fibers running toward the ventricular surface were observed among the cylindrical ependymal cells in the SCO of the dog. Concerning the distributional density of the peptidergic nerve fibers, VP-immunoreactive fibers displayed the highest and LHRH-immunoreactive fibers the lowest values. Most serotonergic and peptidergic fibers returned to the basal portion of the SCO after forming loops immediately beneath the ventricular surface of the ependymal layer. Serotonin-immunoreactive fibers often established a perivascular plexus around the blood vessels in the SCO.At the electron-microscopic level, after use of antiserum to serotonin dark immunoprecipitate was observed in large granular vesicles and the matrix surrounding small and large, clear vesicles and mitochondria; VP immunoreactivity was localized in the large granular vesicles.Serotonergic nerve fibers could be detected in the SCO of the newborn dog. Although the distributional density was in principle not different from that in the adult animal, individual fibers showed immature features such as growth cones and insufficiently swollen varicosities. After penetrating into the ventricle, in the newborn dog, a few serotonin-immunoreactive fibers ran for a relatively long distance on the ependymal surface.  相似文献   

10.
The present study applied the separated adrenal capsules of rats for wholemount immunocytochemistry and used tyrosine hydroxylase (TH) antibody as a marker for catecholamines. TH-immunoreactive nerve bundles without varicosities and fibers with varicosities were seen to run along or to encircle blood vessels entering the adrenal capsule from the outside, and then to run along a network of blood vessels in the intracapsular region. Also, the TH-immunoreactive nerve bundles and fibers were found to run along blood vessels in the subcapsular region. Some TH-immunoreactive nerve fibers and bundles with varicosities, unassociated with the blood vessels, were seen in the subcapsular region. In this region, TH-immunoreactive nerve fibers with varicosities were often seen to be closely associated with the cortical cells. Some TH-immunoreactive nerve fibers without varicosities were visible within the splanchnic nerve in the subcapsular region. The present study suggests that numerous catecholaminergic nerve fibers are associated with blood vessels forming a network in the superficial region of the rat adrenal gland.  相似文献   

11.
Summary The localization of the proenkephalin A-derived octapeptide, Met5-enkephalin-Arg6-Gly7-Leu8 (MEAGL), was studied in the major salivary glands of Sprague-Dawley and Wistar rats with the indirect immunofluorescence method. MEAGL-immunoreactive nerve fibers were found around the acini, along intra-and interlobular salivary ducts and in close contact with blood vessels. In the parotid and submandibular glands tyrosine hydroxylase (TH) immunoreactivity was observed in nerve fibers around the acini, in association with intra- and interlobular salivary ducts and around blood vessels, while in the sublingual gland TH-immunoreactive nerve fibers were only seen around blood vessels. Parasympathetic neurons in submandibular ganglia contained MEAGL immunoreactivity. Moderate TH immunoreactivity was seen in some neurons of the submandibular ganglia. A subpopulation of sympathetic principal neurons in the superior cervical ganglion were immunoreactive for both MEAGL and TH. In the trigeminal ganglion, no MEAGL-immunoreactive sensory neurons or nerve fibers were observed. Superior cervical ganglionectomies resulted in a complete disappearance of TH-immunoreactive nerve fibers, while MEAGL-immunoreative nerve fibers were still present in the glands. The presence of MEAGL immunoreactivity in neurons of both sympathetic superior cervical ganglia and parasympathetic submandibular ganglia and the results of superior cervical ganglionectomies suggest, that MEAGL-immunoreactive nerve fibers in the major salivary glands of the rat have both sympathetic and parasympathetic origin.  相似文献   

12.
Serotonergic neurones are among the first to develop in the central nervous system. Their survival and maturation is promoted by a variety of factors, including serotonin itself, brain-derived neurotrophic factor (BDNF) and S100beta, an astrocyte-specific Ca(2+) binding protein. Here, we used BDNF-deficient mice and cell cultures of embryonic raphe neurones to determine whether or not BDNF effects on developing serotonergic raphe neurones are influenced by its action on glial cells. In BDNF-/- mice, the number of serotonin-immunoreactive neuronal somata, the amount of the serotonin transporter, the serotonin content in the striatum and the hippocampus, and the content of 5-hydroxyindoleacetic acid in all brain regions analysed were increased. By contrast, reduced immunoreactivity was found for myelin basic protein (MBP) in all brain areas including the raphe and its target region, the hippocampus. Exogenously applied BDNF increased the number of MBP-immunopositive cells in the respective culture systems. The raphe area displayed selectively reduced immunoreactivity for S100beta. Accordingly, S100beta was increased in primary cultures of pure astrocytes by exogenous BDNF. In glia-free neuronal cultures prepared from the embryonic mouse raphe, addition of BDNF supported the survival of serotonergic neurones and increased the number of axon collaterals and primary dendrites. The latter effect was inhibited by the simultaneous addition of S100beta. These results suggest that the presence of BDNF is not a requirement for the survival and maturation of serotonergic neurones in vivo. BDNF is, however, required for the local expression of S100beta and production of MBP. Therefore BDNF might indirectly influence the development of the serotonergic system by stimulating the expression of S100beta in astrocytes and the production MBP in oligodendrocytes.  相似文献   

13.
The distribution of serotonin-, GABA- and substance P-like immunoreactivity has been studied in the cerebral and visceral ganglia and in some peripheral tissues of Mytilus galloprovincialis (Moleusca, Bivalvia). Cerebral ganglia contain a developed serotonin-immunoreactive neuronal subpopulation and numerous GABA-immunoreactive neurons, whereas neurons positive for substance P are sparse. In peripheral tissues innervated by the cerebral ganglia (labial palps and oesophagus) only serotonin-immunoreactive nerve fibers were found. In the visceral ganglia, serotonin- and GABA-immunoreactive neurons are far less numerous than in the cerebral ganglia, whereas several neurons positive for substance P are scattered in all cortical zones. Serotonin-immunoreactive plexuses innervate the posterior adductor muscle and the gill filaments which contain also a developed nerve network positive for substance P. The distribution pattern of the immunoreactive elements in the ganglia and in peripheral territories indicates that GABA should exert only a central action, whereas serotonin and a substance P-like peptide are involved both in central and peripheral neurotransmission.  相似文献   

14.
Alterations in cerebral monoamines following application of electroacupuncture were investigated using conscious rats with and without application of restraining stress. The dopamine and serotonin levels were significantly decreased in the nucleus accumbens, caudate putamen, and lateral hypothalamus and increased in the dorsal raphe nucleus by restraining stress. On the other hand, application of electroacupuncture on the lumbar and hindlimb segments eliminated the above changes in dopamine, while the changes in serotonin were attenuated by lumbar and hindlimb electroacupuncture. However, the effects of hindlimb electroacupuncture were greater than those of lumbar electroacupuncture. These results clearly indicate that lumbar and hindlimb electroacupuncture stimulations have differential effects on brain monoaminergic neurons in rats exposed to restraining stress. Moxa burning stimulation was applied to the lumbar and hindlimb segments of rats without restraining stress. The dopamine level was significantly increased in the midbrain substantia nigra-ventrotegmental area by hindlimb moxibusion. On the other hand, the serotonin levels were significantly increased in the nucleus amygdala by lumber moxibusion and decreased in the nucleus accumbens by hindlimb moxibusion. The present results indicate that electroacupuncture applied to the lumbar and hindlimb segments has an antistress effect, while the application of moxibustion to the lumbar and hindlimb segments was likely to stimulate the functions of mesocortical and mesolimbic dopaminergic and serotonergic neurons. We suggest that functional alterations in cerebral dopaminergic and serotonergic neurons are involved in the clinical efficacy of electroacupuncture and moxibustion, especially because of their antistress and psychosomatic actions.  相似文献   

15.
The response of brain serotonergic (dorsal raphe), noradrenergic (locus coeruleus) and dopaminergic (pars compacta, substantia nigra) neurons to lisuride hydrogen maleate, a non-hallucinogenic ergot, was studied in the rat using extracellular single cell recording techniques. As has been previously reported for LSD, minute intravenous infusions of lisuride (1–5 μg/kg) produced a complete but reversible suppression of raphe unit spontaneous firing. A similar depressant response was noted when lisuride was applied to raphe units by microiontophoresis. In contrast, locus coeruleus neurons were accelerated by the drug at somewhat higher doses (25–50 μg/kg). Pars compacta neurons demonstrated a predominately depressant response to lisuride but many of the cells tested were only partially suppressed and a few units were accelerated. It is suggested that the marked alterations in central monoamine turnover which have been observed with lisuride are directly paralled by changes in impulse flow in monoaminergic neurons. The fact that lisuride has powerful suppressant effects on central serotonergic neurons but no psychotomimetic actions in man challenges the “serotonin theory” of hallucinogensis; however, other pharmacological properties may account for lisuride's lack of hallucinogenic effects. Further studies with lisuride may provide insight into those drug characteristics critical to the presence or absence of hallucinogenic action.  相似文献   

16.
Larval development in crabs is characterized by a striking double metamorphosis in the course of which the animals change from a pelagic to a benthic life style. The larval central nervous system has to provide an adequate behavioural repertoire during this transition. Thus, processes of neuronal reorganization and refinement of the early larval nervous system could be expected to occur in the metamorphosing animal. In order to follow identified sets of neurons throughout metamorphosis, whole mount preparations of the brain and ventral nerve cord of laboratory reared spider crab larvae (Hyas araneus) were labelled with an antibody against the neurotransmitter serotonin. The system of serotonin-immunoreactive cell bodies, fibres and neuropils is well-developed in newly hatched larvae. Most immunoreative structures are located in the protocerebrum, with fewer in the suboesophaegeal ganglia, while the thoracic and abdominal ganglia initially comprise only a small number of serotonergic neurons and fibres. However, there are significant alterations in the staining pattern through larval development, some of which are correlated to metamorphic events. Accordingly, new serotonin-immunoreactive cells are added to the early larval set and the system of immunoreactive fibres is refined. These results are compared to the serotonergic innervation in other decapod crustaceans.  相似文献   

17.
This study examines whether there is a change in the pattern of distribution of cholecystokinin-octapeptide (CCK-8), calcitonin-gene-related peptide (CGRP), neuropeptide-Y (NPY), substance P (SP) and vasoactive intestinal polypeptide (VIP) in the pancreas of streptozotocin (STZ)-diabetic (host) rats after subcutaneous pancreatic transplantation. Varicose CCK-8-immunopositive nerve fibres were observed in the wall of blood vessels of both normal and diabetic host pancreata. The density of CCK-8-immunoreactive varicose nerve fibres appeared to have increased in host rat pancreas. CGRP was demonstrated in many nerve fibres located in the wall of blood vessels of both normal and host pancreas. CGRP, however, seemed to be better expressed in the nerves of host pancreas when compared to normal. The pancreata of both normal and diabetic (host) rats contained numerous NPY-immunopositive varicose nerve fibres located in the wall of blood vessels. SP was demonstrated in neurons located in the interlobular areas of normal tissue and in fine varicose nerve fibres of the interacinar region of the pancreas of STZ-induced diabetic rats with SPTG. In normal pancreatic tissue, VIP-immunopositive nerve fibres were observed in all areas of the pancreas. VIP-positive nerve fibres were still discernible especially in the interacinar regions of the pancreas of host rats. In conclusion, the pattern of distribution and density of NPY, SP and VIP in the pancreas of STZ-induced diabetic rats with SPTG is similar to that observed in normal pancreas, but the expression of CGRP and CCK-8 seemed to have increased as a result of transplantation and or diabetes.  相似文献   

18.
N J Penington  J S Kelly 《Neuron》1990,4(5):751-758
The release of serotonin (5-HT) from the terminals of serotonergic (raphe) neurons is under inhibitory feed-back control. 5-HT, acting on raphe cell body autoreceptors, also mediates inhibitory postsynaptic potentials as a result of release from collaterals from neighboring raphe neurons. This may involve a ligand (5-HT)-gated increase in the membrane potassium conductance, leading to a decrease in action potential frequency, which could indirectly reduce calcium influx into nerve terminals. In this report we demonstrate that 5-HT can also directly reduce calcium influx at potentials including and bracketing the peak of calcium current activation. Using acutely isolated, patch-clamped dorsal raphe neurons, we found that low concentrations of 5-HT and the 5-HT1A-selective agonist 8-OH-DPAT reversibly decrease whole-cell calcium current. This effect is antagonized by the putative 5-HT1A-selective antagonist NAN 190. Hence, the inhibition of calcium current may serve a physiological role in these cells and elsewhere in the brain.  相似文献   

19.
The inhibition of sensory responsivity is considered a core serotonin function, yet this hypothesis lacks direct support due to methodological obstacles. We adapted an optogenetic approach to induce acute, robust and specific firing of dorsal raphe serotonergic neurons. In vitro, the responsiveness of individual dorsal raphe serotonergic neurons to trains of light pulses varied with frequency and intensity as well as between cells, and the photostimulation protocol was therefore adjusted to maximize their overall output rate. In vivo, the photoactivation of dorsal raphe serotonergic neurons gave rise to a prominent light-evoked field response that displayed some sensitivity to a 5-HT1A agonist, consistent with autoreceptor inhibition of raphe neurons. In behaving mice, the photostimulation of dorsal raphe serotonergic neurons produced a rapid and reversible decrease in the animals'' responses to plantar stimulation, providing a new level of evidence that serotonin gates sensory-driven responses.  相似文献   

20.
Serotonin is present in the retina of many species, in which plays roles as a neurotransmitter, as a modulator of regeneration, and as the precursor of melatonin. The turnover of serotonin in the goldfish retina is modified by the lesion of the optic nerve and, in postcrush goldfish retinal explants, serotonin inhibits the outgrowth. In the present study, the modification of the serotonergic system of the retina induced by the process of regeneration was explored. The addition of the precursor of serotonin, 5-hydroxytryptophan, to retinal explants, increased the levels of serotonin in a concentration-dependant manner. The concentration of serotonin differentially increased in control and postcrush explants cultured in the presence of 5-hydroxytryptophan for various periods of time, indicating a greater accumulation of the indoleamine at early periods of time in the control than in the postcrush tissue culture. This observation, together with the fact that serotonin concentration in postcrush retina cultured in the absence of 5-hydroxytryptophan and exposed to the precursor for 60 min increased less than in the control indicates a saturation of the serotonergic system produced by the lesion. The addition of imipramine or citalopram, serotonin uptake blockers, did not significantly change the concentration of serotonin in the cultures, thus, the elevation of serotonin accumulation, especially in the post-crush tissue, might not be due to the transport from the medium. The intraocular injection of 5-hydroxytryptophan after the crush of the optic nerve resulted in a decrease in the outgrowth of retinal explants, supporting the in vivo role of serotonin during the regenerating process in situ. The lesion of the optic nerve did not affect the specific cells, since the number of serotonin-immunoreactive neurons in the retina were not modified by the crush. Taken together, retinal serotonin system is regulated after producing a lesion of the optic nerve, a modulation which has been demonstrated in vivo and in vitro. Thus, there is a reciprocal interaction, since serotonin influences outgrowth in the postcrush retina and the serotonergic system is modulated by the crush, indicating a mechanism of feed-back regulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号