首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The subcellular distribution of adenyl cyclase was investigated in small intestinal epithelial cells. Enterocytes were isolated, disrupted and the resulting membranes fractionated by differential and sucrose gradient centrifugation. Separation of luminal (brush border) and contra-luminal (basolateral) plasma membrane was achieved on a discontinuous sucrose gradient.The activity of adenyl cyclase was followed during fractionation in relation to other enzymes, notably those considered as markers for luminal and contraluminal plasma membrane. The luminal membrane was identified by the membrane-bound enzymes sucrase and alkaline phosphatase and the basolateral region by (Na+ + K+)-ATPase. Enrichment of the former two enzymes in purified luminal plasma membrane was 8-fold over cells and that of (Na+ + K+)-ATPase in purified basolateral plasma membranes was 13-fold. F?-activated adenyl cyclase co-purified with (Na+ + K+)-ATPase, suggesting a common localization on the plasma membrane. The distribution of K+-stimulated phosphatase and 5′-nucleotidase also followed (Na+ + K+)-ATPase during fractionation.  相似文献   

2.
A method for an analytical isolation of plasma membranes from columnar cells (colonocytes) of the proximal colon of the guinea pig is described. Isolation of the colonocytes was performed by a mild EDTA-chelation method. After homogenization, two subsequent sucrose gradient centrifugations (isokinetic and isopycnic) yielded a plasma-membrane fraction which was enriched 12-fold in (Na+ + K+)-ATPase activity and 8-fold in adenylate cyclase activity. It is suggested that the purified membrane fraction consists mainly of basolateral membranes of the colonocytes. Due to the lack of suitable marker enzymes, no evidence for enrichment of the brush-border membranes was obtained. Histochemical studies demonstrated that alkaline phosphatase is absent from the luminal membrane of the surface epithelial cells of the proximal colon of the guinea pig.  相似文献   

3.
Basolateral plasma membranes of rat small intestinal epithelium were purified by density gradient centrifugation followed by zonal electrophoresis on density gradients. Crude basolateral membranes were obtained by centrifugation in which the marker enzyme, (Na+ + K+)-ATPase, was enriched 10-fold with respect to the initial homogenate. The major contaminant was a membrane fraction derived from smooth endoplasmic reticulum, rich in NADPH-cytochrome c reductase activity. The crude basolateral membrane preparation could be resolved into the two major components by subjecting it to zonal electrophoresis on density gradients. The result was that (Na+ + K+)-ATPase was purified 22-fold with respect to the initial homogenate. Purification with respect to mitochondria and brush border membranes was 35- and 42-fold, respectively. Resolution of (Na+ + K+)-ATPase from NADPH-cytochrome c reductase by electrophoresis was best with membrane material from adult rats between 180 and 250 g. No resolution between the two marker enzymes occurred with material from young rats of 125 to 140 g. These results demonstrate that zonal electrophoresis on density gradients, a simple and inexpensive technique, has a similar potential to free-flow electrophoresis.  相似文献   

4.
Pancreas of the cat was fractionated into its subcellular components by centrifugation through an exponential ficoll-sucrose density gradient in a zonal rotor. This enables a preparation of four fractions enriched in plasma membranes, endoplasmic reticulum, mitochondria and zymogen granules, respectively. The first fraction, enriched by 9- to 15-fold in the plasma membrane marker enzymes, hormone-stimulated adenylate cyclase, (Na+K+)-ATPase, and 5'-nucleotidase, is contaminated by membranes derived from endoplasmic reticulum but is virtually free from mitochondrial and zymogen-granule contamination. The second fraction from the zonal gradient shows only moderate enrichment of the above marker enzymes but contains a considerable quantity of plasma membrane marker enzymes and represents mostly rough endoplasmic reticulum. The third fraction contains the bulk of mitochondria and the fourth mainly zymogen granules as assessed by electron microscopy and marker enzymes for both mitochondria and zymogen granules, namely succinic dehydrogenase, trypsin and amylase. Further purification of the plasma membrane fractions by differential and sucrose step-gradient centrifugation yields plasma membranes enriched 40-fold in basal and hormone-stimulated adenylate cyclase and (Na+K+)-ATPase.  相似文献   

5.
A method was developed to isolate renal basolateral membranes from cortical kidney tubule cells of single rats. The isolated membrane fraction was characterized by the measurement of marker enzyme activities and by electron microscopy. 1. After centrifugation of crude plasma membranes on a discontinuous sucrose density gradient the basolateral membranes accumulated at a sucrose density of p= 1.14-1.15 g/ml. The yield was 147 mug membrane protein/g kidney wet weight. Protein recovery was 0.1%. 2. (Na+ + K+)-ATPase was enriched 22-fold from the homogenate. The recovery was 2.6%. The (Na+ + K+)/Mg2+-ATPase ratio was 4.1. 3. The contamination by brush borders was small. Alkaline phosphatase was 1.6-fold enriched and 0.2% was recovered. Aminopeptidase was 1-fold enriched with a recovery of 0.1%. The contamination by mitochondria, lysosomes and endoplasmic reticulum was negligible. 4. In electron micrographs the basolateral membranes showed a typical triple layered profile and were characterized by the presence of junctional complexes, gap junctions or tight junctions.  相似文献   

6.
Plasma membranes were isolated from rat liver mainly under isotonic conditions. As marker enzymes for the plasma membrane, 5'-nucleotidase and (Na+ + K+)-ATPase were used. The yield of plasma membrane was 0.6-0.9 mg protein per g wet weight of liver. The recovery of 5'-nucleotidase and (Na+ +K+)-ATPase activity was 18 and 48% of the total activity of the whole-liver homogenate, respectively. Judged from the activity of glucose-6-phosphatase and succinate dehydrogenase in the plasma membrane, and from the electron microscopic observation of it, the contamination by microsomes and mitochondria was very low. A further homogenization of the plasma membrane yielded two fractions, the light and heavy fractions, in a discontinuous sucrose gradient centrifugation. The light fraction showed higher specific activities of 5'-nucleotidase, alkaline phosphatase, (Na+ +K+)-ATPase and Mg2+-ATPase, whereas the heavy one showed a higher specific activity of adenylate cyclase. Ligation of the bile duct for 48 h decreased the specific activities of (Na2+ +K+)-ATPase and Mg2+-ATPase in the light fraction, whereas it had no significant influence on the activities of these enzymes in the heavy fraction. The specific activity of alkaline phosphate was elevated in both fractions by the obstruction of the bile flow. Electron microscopy on sections of the plasma membrane subfractions showed that the light fraction consisted of vesicles of various sizes and that the heavy fractions contained membrane sheets and paired membrane strips connected by junctional complexes, as well as vesicles. The origin of these two fractions is discussed and it is suggested that the light fraction was derived from the bile front of the liver cell surface and the heavy one contained the blood front and the lateral surface of it.  相似文献   

7.
A rapid and reproducible method has been developed for the simultaneous isolation of basolateral and brush-border membranes from the rabbit renal cortex. The basolateral membrane preparation was enriched 25-fold in (Na+ + K+)-ATPase and the brush-border membrane fraction was enriched 12-fold in alkaline phosphatase, whereas the amount of cross-contamination was low. Contamination of these preparations by mitochondria and lysosomes was minimal as indicated by the low specific activities of enzyme markers, i.e., succinate dehydrogenase and acid phosphatase. The basolateral fraction consisted of 35-50% sealed vesicles, as demonstrated by detergent (sodium dodecyl sulfate) activation of (Na+ + K+)-ATPase activity and [3H]ouabain binding. The sidedness of the basolateral membranes was estimated from the latency of ouabain-sensitive (Na+ + K+)-ATPase activity assayed in the presence of gramicidin, which renders the vesicles permeable to Na+ and K+. These studies suggest that nearly 90% of the vesicles are in a right-side-out orientation.  相似文献   

8.
Luminal brush border and contraluminal basal-lateral segments of the plasma membrane from the same kidney cortex were prepared. The brush border membrane preparation was enriched in trehalase and gamma-glutamyltranspeptidase, whereas the basal-lateral membrane preparation was enriched in (Na+ + K+1)-ATPase. However, the specific activity of (Na+ + K+)-ATPase in brush border membranes also increased relative to that in the crude plasma membrane fraction, suggesting that (Na+ + K+)-ATPase may be an intrinsic constituent of the renal brush border membrane in addition to being prevalent in the basal-lateral membrane. Adenylate cyclase had the same distribution pattern as (Na+ + K+)-ATPase, i.e. higher specific activity in basal-lateral membranes and present in brush border membranes. Adenylate cyclase in both membrane preparations was stimulated by parathyroid hormone, calcitonin, epinephrine, prostaglandins and 5'-guanylylimidodiphosphate. When the agonists were used in combination enhancements were additive. In contrast to the distribution of adenylate cyclase, guanylate cyclase was found in the cytosol and in basal-lateral membranes with a maximal specific activity (NaN3 plus Triton X-100) 10-fold that in brush border membranes. ATP enhanced guanylate cyclase activity only in basal-lateral membranes. It is proposed that guanylate cyclase, in addition to (Na+ + K+)-ATPase, be used as an enzyme "marker" for the renal basal-lateral membrane.  相似文献   

9.
Basolateral membrane vesicles were isolated from the rat kidney cortex by a modified method of cation precipitation. Different steps of preparation were analysed using the marker enzymes: Na+,K+-ATPase (for basolateral membrane), alkaline phosphatase (for apical membrane), glucose-6-phosphatase (for membranes of endoplasmic reticulum) and succinate dehydrogenase (for mitochondria). The basolateral membrane was purified by a 8-9-fold treatment with Na+,K+-ATPase, while other membrane contaminations were as low as 2% (as compared to homogenate). The transport of 3H-p-aminohippurate (3H-PAH) by basolateral membrane vesicles was measured under different experimental conditions. The 3H-PAH uptake was found to be Na-gradient dependent. The initial rate of 3H-PAH uptake in the presence of NaCl gradient (500 pM/mg X min) was higher than without the gradient (88 pM/mg X min). It is concluded that the PAH transfer across the basolateral membrane may be energized by the Na+ chemical gradient.  相似文献   

10.
Basolateral plasma membranes were prepared from rat parotid gland after centrifugation in a self-orienting Percoll gradient. K+-dependent phosphatase [Na+ + K+)-ATPase), a marker enzyme for basolateral membranes, was enriched 10-fold from tissue homogenates. Using this preparation, the transport of alpha-aminoisobutyrate was studied. The uptake of alpha-aminoisobutyrate was Na+-dependent, osmotically sensitive, and temperature-dependent. In the presence of a Na+ gradient between the extra- and intravesicular solutions, vesicles showed an 'overshoot' accumulation of alpha-aminoisobutyrate. Sodium-dependent alpha-aminoisobutyrate uptake was saturable, exhibiting an apparent Km of 1.28 +/- 0.35 mM and Vmax of 780 +/- 170 pmol/min per mg protein. alpha-Aminoisobutyrate transport was inhibited considerably by monensin, but incubating with ouabain was without effect. These results suggest that basolateral membrane vesicles, which possess an active amino acid transport system (system A), can be prepared from the rat parotid gland.  相似文献   

11.
Changes in activities of plasma membrane enzymes during liver regeneration may be related to the maintenance of hepatic function or to the regulation of cell proliferation. Plasma membranes were isolated from rat livers at various times after partial hepatectomy, and the specific activities of alkaline phosphatase, (Na+ + K+)-ATPase, leucine aminopeptidase, 5'-nucleotidase, and adenylate cyclase (basal and with glucagon or epinephrine) were measured. Alkaline phosphatase and (Na+ + K+)-ATPase activity increased 3.6-fold and 2-fold respectively, during the first 48 h after partial hepatectomy. The time of onset and duration of change suggest that these increases in activity are involved in the maintenance of bile secretion. Decreases in leucine aminopeptidase activity at 48--108 h and in 5'-nucleotidase activity at 12--24 h were observed, which may be involved in the restoration of protein and accumulation of RNA. The basal activity of adenylate cyclase increased after partial hepatectomy. The response of adenylate cyclase to epinephrine showed a transitory increase between 36 and 108 h after surgery, while the response to glucagon was decreased by approximately 50% at all time points through 324 h after surgery. These changes in the hormone responsiveness of adenylate cyclase are similar to those previously observed in fetal and preneoplastic liver.  相似文献   

12.
Sorbitol density gradient centrifugation applied to intestinal mucosa homogenates resulted in a complete separation of soluble calcium-binding protein from the bound fraction of calcium-binding protein, providing further documentation of the bound pool of calcium-binding protein. The peak of the bound calcium-binding protein was not associated with the major peaks of any of the markers used, but was associated with minor peaks of alkaline phosphatase, RNA, and glucose-6-phosphatase. Lack of association of bound calcium-binding protein with (Na+ + K+)-ATPase indicated that the bound calcium-binding protein is not on the basolateral membrane. Differential centrifugation fractionation indicated that the bound calcium-binding protein is not associated with nuclei or mitochondria. The bound calcium-binding protein also could not be detected in partially purified brush borders. Exclusion of the brush border and basolateral membranes as the location of the bound calcium-binding protein suggests an intracellular locale.  相似文献   

13.
Lactoperoxidase-catalysed iodination was used to label intestinal epithelial cell sheets with 125I. The iodination was carried out under conditions that allowed little penetration of lactoperoxidase into the cells and membrane-bound 125I therefore provided an effective marker for following plasma-membrane fragments through subcellular-fractionation procedures. 2. After homogenization and isopycnic zonal centrifugation through sucrose gradients two peaks of membrane-bound 125I were detected. One coincided with brush border enzymes such as alkaline phosphatase, disaccharidases and L-leucine B-naphthylamidase, whereas the other was coincident with the major peak of (Na++K+)-stimulated ATPase (adenosine triphosphatase), which has been thought to be concentrated in the basolateral plasma membranes of these cells. Neither peak of 125I reflected the distribution of any marker for an intracellular organelle. 3. A larger proportion of the (Na++K+)-stimulated ATPase, and thus of the basolateral plasma-membrane material, was found in a crude 'mitochondrial' fraction. It was not readiily separated from mitochondria by conventional techniques of subcellular fractionation. 4. Treatment of the 'mitochondrial' fraction with digitonin increased the density of basolateral plasma membrane but had little effect on mitochondrial density. A purified preparation of digitonin-loaded basolateral plasma membranes was isolated at a density of 1.20-1.22 by isopycnic centrifugation. 5. The enzymic composition of this preparation of basolateral plasma membranes is compared with previous preparations isolated from intestinal mucosal 'scrape' materials and from isolated cells.  相似文献   

14.
(Na+ + K+)-ATPase activity is demonstrated in plasma membranes from pig mesenteric lymph nodes. After dodecyl sulfate treatment plasma membranes have an 18-fold higher (Na+ + K+)-ATPase activity, while their ouabain-insensitive Mg2+-ATPase is markedly lowered. A solubilized (Na+ +K+)-ATPase fraction, obtained by Lubrol WX treatment of the membranes, has very high specific activity (21 mumol Pi/h per mg protein). Concanavalin A has no effect on these partially purified (Na+ + K+)-ATPase, while inhibits (40%) this activity in less purified fractions which still contain Mg2+-ATPase activity.  相似文献   

15.
Highly purified plasma membranes of calf thymocytes were fractionated by means of affinity chromatography on ouabain-Sepharose. By the method used two subfractions were obtained, one eluting freely from the affinity gel (MF1oua) and a second specifically retained by matrix-bound ouabain (MF2oua), with a total recovery of 95 per cent. Fractionation required the binding of matrix-bound ouabain to its plasma membrane receptor, i.e. (Na+ + K+)-ATPase. Increasing the temperature and binding time did not significantly alter the fractionation of plasma membranes into the two subfractions. Both plasma membrane subfractions separated by ouabain-Sepharose were of plasma membrane origin, as revealed by the identical specific activities of several membrane bound enzymes, gamma-glutamyl transpeptidase, alkaline phosphatase and Mg2+-ATPase in unseparated plasma membranes and in both subfractions, and by the identical amounts of the cytoskeletal protein actin in unseparated plasma membranes and subfractions. The plasma membrane subfractions MF1oua and MF2oua showed different structural and functional properties. In SDS-polyacrylamide gel electrophoresis polypeptides of 170, 150, 110, 94, 39, and 30 kDa were several-fold enriched in the adherent fraction, MF2oua. The phospholipid fatty acid composition of the plasma membrane subfractions proved to be different, as well. MF2oua contained significantly higher amounts of saturated fatty acids as compared to MF1oua. The specific activities of (Na+ + K+)-ATPase, Ca2+-ATPase and lysolecithin acyltransferase were highly enriched in the adherent fraction MF2oua, as compared to MF1oua. The data suggest that by the means of affinity chromatography on ouabain-Sepharose plasma membrane domains of the lymphocyte plasma membrane can be isolated, most probably implicated in the initiation of lymphocyte activation.  相似文献   

16.
When purified on a sucrose gradient, basolateral membranes from dog kidney outer medulla are found to be very rich in (Na,K)-ATPase; about 50% of the membrane protein is comprised of this enzyme. (Na,K)-ATPase activity is activated 3- to 5-fold by detergent treatment, and this has been previously attributed to the impermeable vesicular nature of the membranes. Porcine trypsin inactivates only that fraction of (Na,K)-ATPase activity seen without detergent, consistent with a right-side-out orientation of membrane vesicles; the trypsin sensitivity and detergent activation of [3H]ouabain binding in the presence of Na+ + Mg2+ + ATP or Mg2+ + Pi are also consistent with this hypothesis. Using nearly isosmotic Hypaque density gradient centrifugation a population of impermeable right-side-out membrane vesicles (H1) is separated from a leaky population (H2). (Na,K)-ATPase activity in the H1 population is 20-fold activated by detergent and insensitive to porcine trypsin. The vesicle volume is 2.4 microliters/mg, and monovalent cations passively equilibrate with the intravesicular volume on a time scale of 5-30 min. Very rapid ouabain sensitive 22Na efflux from the vesicles is observed when ATP is photolytically released from intravesicular caged ATP.  相似文献   

17.
In polarized Madin-Darby canine kidney (MDCK) epithelial cells, ankyrin, and the alpha- and beta-subunits of fodrin are components of the basolateral membrane-cytoskeleton and are colocalized with the Na+,K+-ATPase, a marker protein of the basolateral plasma membrane. Recently, we showed with purified proteins that the Na+,K+-ATPase is competent to bind ankyrin with high affinity and specificity (Nelson, W. J., and P. J. Veshnock. 1987. Nature (Lond.). 328:533-536). In the present study we have sought biochemical evidence for interactions between these proteins in MDCK cells. Proteins were solubilized from MDCK cells with an isotonic buffer containing Triton X-100 and fractionated rapidly in sucrose density gradients. Complexes of cosedimenting proteins were detected by analysis of sucrose gradient fractions in nondenaturing polyacrylamide gels. The results showed that ankyrin and fodrin cosedimented in sucrose gradient. Analysis of the proteins from the sucrose gradient in nondenaturing polyacrylamide gels revealed two distinct ankyrin:fodrin complexes that differed in their relative electrophoretic mobilities; both complexes had electrophoretic mobilities slower than that of purified spectrin heterotetramers. Parallel analysis of the distribution of solubilized Na+,K+-ATPase in sucrose gradients showed that there was a significant overlap with the distribution of ankyrin and fodrin. Analysis by nondenaturing polyacrylamide gel electrophoresis showed that the alpha- and beta-subunits of the Na+,K+-ATPase colocalized with the slower migrating of the two ankyrin:fodrin complexes. The faster migrating ankyrin:fodrin complex did not contain Na+,K+-ATPase. These results indicate strongly that the Na+,K+-ATPase, ankyrin, and fodrin are coextracted from whole MDCK cells as a protein complex. We suggest that the solubilized complex containing these proteins reflects the interaction of the Na+,K+-ATPase, ankyrin, and fodrin in the cell. This interaction may play an important role in the spatial organization of the Na+,K+-ATPase to the basolateral plasma membrane in polarized epithelial cells.  相似文献   

18.
The effects of aminoglycoside antibiotics on plasma membranes were studied using rat renal basolateral and brush-border membrane vesicles. 3',4'-Dideoxykanamycin was bound to the basolateral membrane and brush-border membrane vesicles. They had a single class of binding sites with nearly the same constant, and the basolateral membrane vesicles had more binding sites than those of the brush-border membrane. Dideoxykanamycin B was transported into the intravesicular space of brush-border membrane vesicles, but not into that of basolateral membrane vesicles. The (Na+ + K+)-ATPase activity of the plasma membrane fraction prepared from the kidney of rat administered with dideoxykanamycin B intravenously decreased significantly. Aminoglycoside antibiotics entrapped in the basolateral membrane vesicles inhibited (Na+ + K+)-ATPase activity, but those added to the basolateral membrane vesicles externally failed to do so. The activity of (Na+ + K+)-ATPase was non-competitively inhibited by gentamicin. It is thus concluded that aminoglycoside antibiotics are taken up into the renal proximal tubular cells across the brush-border membrane and inhibit the (Na+ + K+)-ATPase activity of basolateral membrane. This inhibition may possibly disrupt the balance of cellular electrolytes, leading to a cellular dysfunction, and consequently to the development of aminoglycoside antibiotics' nephrotoxicity.  相似文献   

19.
The localization of the membrane-associated thiol oxidase in rat kidney was investigated. Fractionation of the kidney cortex by differential centrifugation demonstrated that the enzyme is found in the plasma membrane. The crude plasma membrane was fractionated by density-gradient centrifugation on Percoll to obtain purified brush-border and basal-lateral membranes. Gamma-Glutamyltransferase, alkaline phosphatase and aminopeptidase M were assayed as brush-border marker enzymes, and (Na+ + K+)-stimulated ATPase was assayed as a basal-lateral-membrane marker enzyme. Thiol oxidase activity and distribution were determined and compared with those of the marker enzymes. Its specific activity was enriched 18-fold in the basal-lateral membrane fraction relative to its activity in the cortical homogenate, and its distribution paralleled that of (Na+ + K+)-stimulated ATPase. This association indicates that thiol oxidase is localized in the same fraction as (Na+ + K+)-stimulated ATPase, i.e. the basal-lateral region of the plasma membrane of the kidney tubular epithelium.  相似文献   

20.
A method is described for simultaneous preparation of brush-border and basolateral sea bass enterocyte membranes using simple differential centrifugation and discontinuous sucrose gradient density centrifugation techniques. Basolateral membranes were purified with a Na+/K(+)-ATPase yield of about 11% of the original activity, with an enrichment factor of 12. The yield of maltase-glucoamylase, a specific marker of brush-border membranes, was also about 11% of the original activity, with 15-fold enrichment. The characteristics of these membrane preparations were determined. Electron microscopy analysis showed that these two membrane preparations were uniform in size and vesicular in nature. Orientation studies revealed that the luminal membrane vesicles were right-side out and 43% of the antiluminal membrane vesicles were sealed inside out. Investigation of D-glucose and L-leucine uptake showed that these two plasma membrane preparations retained their transport properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号