首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Apoplast as the site of response to environmental signals   总被引:1,自引:0,他引:1  
When the life cycle of plants is influenced by various environmental signals, the mechanical properties of the cell wall are greatly changed. These signals also modify the levels and structure of the cell wall constituents and such modifications are supposed to be the cause of the changes in the wall mechanical properties. These changes in the cell wall, the major component of the apoplast, can be recognized as the response of plants to environmental signals. The analysis of the mechanism leading to the response suggests that the apoplast is involved not only in the response but also in the perception and transduction of environmental signals in concert with the receptors of signals located on the plasma membrane. Thus, the apoplast plays a principal role in the communication of plants with the outer world and enables the plants to adapt themselves and survive in the environment full of stresses.  相似文献   

2.
An endo-xylanase from Trichoderma reesei (xyn2) has been expressed in tall fescue targeted to the vacuole, apoplast or Golgi, constitutively under the control of the rice actin promoter, and to the apoplast under the control of a senescence enhanced gene promoter. Constitutive xylanase expression in the vacuole, apoplast, and golgi, resulted in only a small number of plants with low enzyme activities and in reduced plant growth in apoplast, and golgi targeted plants. Constitutive expression in the apoplast also resulted in increased levels of cell wall bound hydroxycinnamic acid monomers and dimers, but no significant effect on cell wall xylose or arabinose content. In situ constitutive xylanase expression in the Golgi also resulted in increased ferulate dimers. However, senescence induced xylanase expression in the apoplast was considerably higher and did not affect plant growth or the level of monomeric hydroxycinnamic acids or lignin in the cell walls. These plants also showed increased levels of ferulate dimers, and decreased levels of xylose with increased levels of arabinose in their cell walls. While the release of cell wall hydroxycinnamic acids on self digestion was enhanced in these plants in the presence of exogenously applied ferulic acid esterase, changes in cell wall composition resulted in decreases in both tissue digestibility and cellulase mediated sugar release. In situ detection of H2O2 production mediated by ethylene release in leaves of plants expressing apoplast xylanase could be leading to increased dimerisation. High-level xylanase expression in the apoplast also resulted in necrotic lesions on the leaves. Together these results indicate that xylanase expression in tall fescue may be triggering plant defence responses analogous to foliar pathogen attack mediated by ethylene and H2O2.  相似文献   

3.
The apoplast is a continuous plant compartment that connects cells between tissues and organs and is one of the first sites of interaction between plants and microbes. The plant cell wall occupies most of the apoplast and is composed of polysaccharides and associated proteins and ions. This dynamic part of the cell constitutes an essential physical barrier and a source of nutrients for the microbe. At the same time, the plant cell wall serves important functions in the interkingdom detection, recognition, and response to other organisms. Thus, both plant and microbe modify the plant cell wall and its environment in versatile ways to benefit from the interaction. We discuss here crucial processes occurring at the plant cell wall during the contact and communication between microbe and plant. Finally, we argue that these local and dynamic changes need to be considered to fully understand plant–microbe interactions.

Plants and microbes modify the host cell wall to benefit from the interaction by altering its properties, which are defined by the biochemistry of its polysaccharides, regulated by cell wall ions and proteins.  相似文献   

4.
The apoplast is suggested to be involved not only in the response, but also in the perception and transduction of various environmental signals. In this context, apoplastic alkalinization has previously been discussed as a general stress factor caused by abiotic and biotic stress events. In this study, an ion-sensitive fluorescence probe in combination with inverted fluorescence microscopy has been used for in planta monitoring of apoplastic shoot pH during challenging of Vicia faba L. plants by NaCl stress encountered at the roots. We demonstrate that transient increases in leaf apoplastic pH are dependent on the NaCl stress intensity. Moreover, we have visualized spatial pH gradients within the leaf apoplast. Our results indicate that these pH responses are propagated from root to leaf and that this occurs along the apoplast.  相似文献   

5.
The apoplast is a distinct extracellular compartment in plant tissues that lies outside the plasma membrane and includes the cell wall. The apoplastic compartment of plant leaves is the site of several important biological processes, including cell wall formation, cellular nutrient and water uptake and export, plant-endophyte interactions and defence responses to pathogens. The infiltration-centrifugation method is well established as a robust technique for the analysis of the soluble apoplast composition of various plant species. The fluid obtained by this method is commonly known as apoplast washing fluid (AWF). The following protocol describes an optimized vacuum infiltration and centrifugation method for AWF extraction from Phaseolus vulgaris (French bean) cv. Tendergreen leaves. The limitations of this method and the optimization of the protocol for other plant species are discussed. Recovered AWF can be used in a wide range of downstream experiments that seek to characterize the composition of the apoplast and how it varies in response to plant species and genotype, plant development and environmental conditions, or to determine how microorganisms grow in apoplast fluid and respond to changes in its composition.  相似文献   

6.
Growth of turgid cells, defined as an irreversible increase in cell volume and surface area, can be regarded as a physical process governed by the mechanical properties of the cell wall and the osmotic properties of the protoplast. Irreversible cell expansion is produced by creating a driving force for water uptake by decreasing the turgor through stress relaxation in the cell wall. This mechano-hydraulic process thus depends on and can be controlled by the mechanical properties of the wall, which in turn are subject to modification by wall loosening and wall stiffening reactions. The biochemical mechanisms of these changes in mechanical wall properties and their regulation by internal signals (e.g., hormones) or external signals (e.g., light, drought stress) are at present incompletely understood and subject to intensive research. These signals act on walls that have the properties of composite materials in which the molecular structure and spatial organization of polymers rather than the distribution of mechanical stresses dictate the allometry of cell and organ growth and thus cell and organ shape. The significance of cell wall architecture for allometric growth can be demonstrated by disturbing the oriented deposition of wall polymers with microtubule-interfering drugs such as colchicine. Elongating organs (e.g., cylindrical stems or coleoptiles) composed of different tissues with different mechanical properties exhibit longitudinal tissue tensions resulting in the transfer of wall stress from inner to peripheral cell layers that adopt control over organ growth. For physically analyzing the growth process leading to seed germination, the same mechanical and hydraulic parameters as in normal growth are principally appropriate. However, for covering the influences of the tissues that restrain embryo expansion (seed coat, endosperm), an additional force and a water permeability term must be considered.  相似文献   

7.
Electromechanical Interactions in Cell Walls of Gram-Positive Cocci   总被引:28,自引:19,他引:9       下载免费PDF全文
Isolated cell walls of Staphylococcus aureus and Micrococcus lysodeikticus were found to expand and contract in response to changes in environmental pH and ionic strength. These volume changes, which could amount to as much as a doubling of wall dextran-impermeable volume, were related to changes in electrostatic interactions among fixed, ionized groups in wall polymers, including peptidoglycans. S. aureus walls were structurally more compact in the hydrated state and had a higher maximum charge density than M. lysodeikticus walls. However, they were less responsive to changes in electrostatic interactions, apparently because of less mechanical compliance. In media of nearly neutral pH, S. aureus walls had a net positive charge whereas M. lysodeikticus walls had a net negative charge. These charge differences were reflected in Donnan distributions of mobile ions between wall phases and bulk medium phases. Cell walls of unfractionated cocci also could be made to swell and contract, and wall tonus in intact cells appeared to be set partly by electrostatic interactions and partly by mechanical tension in the elastic structures due to cell turgor pressure. The experimental results led to the conclusions that bacterial cell walls have many of the properties of polyelectrolyte gels and that peptidoglycans are flexible polymers. A reasonable mechanical model for peptidoglycan structure might be a sort of three-dimensional rope ladder with relatively rigid, polysaccharide rungs and relatively flexible polypeptide ropes. Thus, the peptidoglycan network surrounding cocci appeared to be predominantly an elastic restraining structure rather than a rigid shell.  相似文献   

8.
The ability to adaptively alter morphological, anatomical, or physiological functional traits to local environmental variations using external environmental cues is especially well expressed by all terrestrial and most aquatic plants. A ubiquitous cue eliciting these plastic phenotypic responses is mechanical perturbation (MP), which can evoke dramatic differences in the size, shape, or mechanical properties of conspecifics. Current thinking posits that MP is part of a very ancient “stress-perception response system” that involves receptors located at the cell membrane/cell wall interface capable of responding to a broad spectrum of stress-inducing factors. This hypothesis is explored here from the perspective of cell wall evolution and the control of cell wall architecture by unicellular and multicellular plants. Among the conclusions that emerge from this exploration is the perspective that the plant cell is phenotypically plastic.  相似文献   

9.
10.
The physiological mechanisms underlying leaf growth inhibition under salt stress are not fully understood. Apoplastic pH is considered to play an important role in cell wall loosening and tissue growth and was demonstrated to be altered by several growth-limiting environmental conditions. In this study we have evaluated the possibility that inhibition of maize (Zea mays) leaf elongation by salinity is mediated by changes in growing cell wall acidification capacity. The kinetics of extended apoplast pH changes by leaf tissue of known expansion rates and extent of growth reduction under stress was investigated (in vivo) and was found similar for non-stressed and salt-stressed tissues at all examined apoplast salinity levels (0.1, 5, 10, or 25 mM NaCl). A similar rate of spontaneous acidification for the salt and control treatments was demonstrated also in in situ experiments. Unlike growing cells that acidified the external medium, mature nongrowing cells caused medium alkalinization. The kinetics of pH changes by mature tissue was also unchanged by salt stress. Fusicoccin, an enhancer of plasmalemma H(+)-ATPase activity level, greatly stimulated elongation growth and acidification rate to a similar extent in the control and salt treatments. That the ability of the growing tissue to acidify the apoplast did not change under same salt stress conditions that induced inhibition of tissue elongation rate suggests that salinity does not inhibit cell growth by impairing the acidification process or reducing the inherent capacity for cell wall acidification.  相似文献   

11.
Jia W  Davies WJ 《Plant physiology》2007,143(1):68-77
The confocal microscope was used to determine the pH of the leaf apoplast and the pH of microvolumes of xylem sap. We quantified variation in leaf apoplast and sap pH in relation to changes in edaphic and atmospheric conditions that impacted on stomatal sensitivity to a root-sourced abscisic acid signal. Several plant species showed significant changes in the pH of both xylem sap and the apoplast of the shoot in response to environmental perturbation. Xylem sap leaving the root was generally more acidic than sap in the midrib and the apoplast of the leaf. Increasing the transpiration rate of both intact plants and detached plant parts resulted in more acidic leaf apoplast pHs. Experiments with inhibitors suggested that protons are removed from xylem sap as it moves up the plant, thereby alkalinizing the sap. The more rapid the transpiration rate and the shorter the time that the sap resided in the xylem/apoplastic pathway, the smaller the impact of proton removal on sap pH. Sap pH of sunflower (Helianthus annuus) and Commelina communis did not change significantly as soil dried, while pH of tomato (Lycopersicon esculentum) sap increased as water availability in the soil declined. Increasing the availability of nitrate to roots also significantly alkalinized the xylem sap of tomato plants. This nitrogen treatment had the effect of enhancing the sensitivity of the stomatal response to soil drying. These responses were interpreted as an effect of nitrate addition on sap pH and closure of stomata via an abscisic acid-based mechanism.  相似文献   

12.
The biopolymer lignin is deposited in the cell walls of vascular cells and is essential for long-distance water conduction and structural support in plants. Different vascular cell types contain distinct and conserved lignin chemistries, each with specific aromatic and aliphatic substitutions. Yet, the biological role of this conserved and specific lignin chemistry in each cell type remains unclear. Here, we investigated the roles of this lignin biochemical specificity for cellular functions by producing single cell analyses for three cell morphotypes of tracheary elements, which all allow sap conduction but differ in their morphology. We determined that specific lignin chemistries accumulate in each cell type. Moreover, lignin accumulated dynamically, increasing in quantity and changing in composition, to alter the cell wall biomechanics during cell maturation. For similar aromatic substitutions, residues with alcohol aliphatic functions increased stiffness whereas aldehydes increased flexibility of the cell wall. Modifying this lignin biochemical specificity and the sequence of its formation impaired the cell wall biomechanics of each morphotype and consequently hindered sap conduction and drought recovery. Together, our results demonstrate that each sap-conducting vascular cell type distinctly controls their lignin biochemistry to adjust their biomechanics and hydraulic properties to face developmental and environmental constraints.

During the development of each vascular cell, specific lignin chemistries control their biomechanics and water conduction properties to face environmental changes.

IN A NUTSHELL Background: Lignin comprises multiple cell wall–localized aromatic polymers that are essential for vascular plants to conduct water and strengthen their organs. It has long been thought that lignin was randomly and nonspecifically assembled to provide mechanical strengthening and waterproofing to cells by filling-up the empty spaces in the cell walls. However, the different cell types and morphotypes forming the different sap-conducting pipes and their cell wall layers (inner vs. outer layer) exhibit specific lignin chemistries that are conserved among plant species. We, therefore, investigated the function of these specific lignin chemistries at the cell and cell wall layer levels for the different sap-conducting pipes in plants. Question: What is the function of a specific lignin chemistry for the different plant sap-conducting pipe cells? Can changes in the lignin chemistry of sap-conducting cells affect their hydraulic capacity when facing environmental conditions such as drought? Findings: We answered these questions by changing lignin levels and composition, using drugs to block lignin formation, and/or genetic engineering to switch off genes, in three complementary systems: (1) isolated cells grown in test tubes that we can trigger to become sap conduits, (2) annual plants, and (3) hardwood trees. We show that lignin chemistry is specific to each cell morphotype and changes during cell maturation, modifying the amount of lignin, the chemical composition of lignin units, and the position of these units in the longer polymer. These specific lignin chemistries are required for the proper function of each cell morphotype to properly conduct the sap and strengthen plant organs. Modifying the amount, the composition, and the time when specific units with distinct chemistry are incorporated in lignin of each cell morphotype has dramatic effects, causing defects in sap conduit hydraulic and biomechanical properties. The ratio between the different chemical units of lignin needs to be fine-tuned to adjust plant sap conduction and mechanical strengthening. Thus, changes in the proportion of lignin units with distinct chemistries confer different hydraulic and mechanical properties enabling plants to better resist and/or recover from drought. We also revealed that increases in the proportion of lignin units with aldehyde modulate plant pipe hydraulic and mechanical properties. Next steps: We are now working to identify and understand the molecular mechanisms that control the formation of specific lignin chemistries in distinct sites and times during the development of the different cell wall layers in each cell type and morphotype.  相似文献   

13.
The cell coverings of plants have two important functions in plant life. Plant cell coverings are deeply involved in the regulation of the life cycle of plants: each stage of the life cycle, such as germination, vegetative growth, reproductive growth, and senescence, is strongly influenced by the nature of the cell coverings. Also, the apoplast, which consists of the cell coverings, is the field where plant cells first encounter the outer environment, and so becomes the major site of plant responses to the environment. In the regulation of each stage of the life cycle and the response to each environmental signal, some specific constituents of the cell coverings, such as xyloglucans in dicotyledons and 1,3,1,4-β-glucans in Gramineae, act as the key component. The physiological functions of plant cell coverings are sustained by the metabolic turnover of these components. The components of the cell coverings are supplied from the symplast, but then they are modified or degraded in the apoplast. Thus, the metabolism of the cell coverings is regulated through the cross-talk between the symplast and the apoplast. The understanding of physiological functions of plant cell coverings will be greatly advanced by the use of genomic approaches. At the same time, we need to introduce nanobiological techniques for clarifying the minute changes in the cell coverings that occur in a small part within each cell. Electronic Publication  相似文献   

14.
Plant development results from controlled cell divisions, structural modifications, and reorganizations of the cell wall. Thereby, regulation of cell wall behaviour takes place at multiple length scales involving compositional and architectural aspects in addition to various developmental and/or environmental factors. The physical properties of the primary wall are largely determined by the nature of the complex polymer network, which exhibits time-dependent behaviour representative of viscoelastic materials. Here, a dynamic nanoindentation technique is used to measure the time-dependent response and the viscoelastic behaviour of the cell wall in single living cells at a micron or sub-micron scale. With this approach, significant changes in storage (stiffness) and loss (loss of energy) moduli are captured among the tested cells. The results reveal hitherto unknown differences in the viscoelastic parameters of the walls of same-age similarly positioned cells of the Arabidopsis ecotypes (Col 0 and Ws 2). The technique is also shown to be sensitive enough to detect changes in cell wall properties in cells deficient in the activity of the chromatin modifier ATX1. Extensive computational modelling of the experimental measurements (i.e. modelling the cell as a viscoelastic pressure vessel) is used to analyse the influence of the wall thickness, as well as the turgor pressure, at the positions of our measurements. By combining the nanoDMA technique with finite element simulations quantifiable measurements of the viscoelastic properties of plant cell walls are achieved. Such techniques are expected to find broader applications in quantifying the influence of genetic, biological, and environmental factors on the nanoscale mechanical properties of the cell wall.  相似文献   

15.
The systematic creation of defined cell wall modifications in the model plant Arabidopsis thaliana by expression of microbial hydrolases with known specific activities is a promising approach to examine the impacts of cell wall composition and structure on both plant fitness and cell wall recalcitrance. Moreover, this approach allows the direct evaluation in living plants of hydrolase specificity, which can differ from in vitro specificity. To express genes encoding microbial hydrolases in A. thaliana, and target the hydrolases to the apoplast compartment, we constructed an expression cassette composed of the Cauliflower Mosaic Virus 35S RNA promoter, the A. thaliana β-expansin signal peptide, and the fluorescent marker protein YFP. Using this construct we successfully introduced into Colombia-0 plants three Aspergillus nidulans hydrolases, β-xylosidase/α-arabinosidase, feruloyl esterase, acetylxylan esterase, and a Xanthomonas oryzae putative a-L: -arabinofuranosidase. Fusion with YFP permitted quick and easy screening of transformants, detection of apoplastic localization, and protein size confirmation. Compared to wild-type Col-0, all transgenic lines showed a significant increase in the corresponding hydrolytic activity in the apoplast and changes in cell wall composition. Examination of hydrolytic activity in the transgenic plants also showed, for the first time, that the X. oryzae gene indeed encoded an enzyme with α-L: -arabinofuranosidase activity. None of the transgenic plants showed a visible phenotype; however, the induced compositional changes increased the degradability of biomass from plants expressing feruloyl esterase and β-xylosidase/α-arabinosidase. Our results demonstrate the viability of creating a set of transgenic A. thaliana plants with modified cell walls to use as a toolset for investigation of how cell wall composition contributes to recalcitrance and affects plant fitness.  相似文献   

16.
The plant cell wall has a somewhat paradoxical mechanical role in the plant: it must be strong enough to resist the high turgor of the cell contents, but at the right moment it must yield to that pressure to allow cell growth. The control of the cell wall's mechanical properties underlies its ability to regulate growth correctly. Recently, we have reported on changes in cell wall elasticity associated with organ formation at the shoot apical meristem in Arabidopsis thaliana. These changes in cell wall elasticity were strongly correlated with changes in pectin matrix chemistry, and we have previously shown that changes in pectin chemistry can dramatically effect organ formation. These findings point to a important role of the cell wall pectin matrix in cell growth control of higher plants. In this addendum we will discuss the biological significance of these new observations, and will place the scientific advances made possible through Atomic Force Microscopy-based nano-indentations in a relatable context with past experiments on cell wall mechanics.  相似文献   

17.
伤胁迫对蚕豆叶片中茉莉酸分布的影响   总被引:2,自引:0,他引:2  
在植物应对伤害等环境刺激的反应中,已知茉莉酸(JA)作为一种重要的信号分子在植物体内长距离运输,但目前对JA的细胞和亚细胞定位知之甚少。本研究用免疫荧光显微镜技术和免疫胶体金电镜技术证明茉莉酸分布在蚕豆叶片叶肉细胞的叶绿体、表皮细胞的细胞壁、保卫细胞的细胞壁、细胞质、叶绿体和细胞核上。其中保卫细胞的叶绿体和细胞核是JA分布的主要场所。叶片的局部灼伤可提高JA在质外体和气孔保卫细胞中的水平。由此推测,伤胁迫下JA分配的改变可能与植物体防御反应密切相关,并参与了对气孔运动的调控。  相似文献   

18.
Although the columella cells of the root cap have been identified as the site of gravity perception, the cellular events that mediate gravity signaling remain poorly understood. To determine if cytoplasmic and/or wall pH mediates the initial stages of root gravitropism, we combined a novel cell wall pH sensor (a cellulose binding domain peptide-Oregon green conjugate) and a cytoplasmic pH sensor (plants expressing pH-sensitive green fluorescent protein) to monitor pH dynamics throughout the graviresponding Arabidopsis root. The root cap apoplast acidified from pH 5.5 to 4.5 within 2 min of gravistimulation. Concomitantly, cytoplasmic pH increased in columella cells from 7.2 to 7.6 but was unchanged elsewhere in the root. These changes in cap pH preceded detectable tropic growth or growth-related pH changes in the elongation zone cell wall by 10 min. Altering the gravity-related columella cytoplasmic pH shift with caged protons delayed the gravitropic response. Together, these results suggest that alterations in root cap pH likely are involved in the initial events that mediate root gravity perception or signal transduction.  相似文献   

19.
The non-linear differential equation that describes the coupling between water transport and solute transport in the apoplast canal system in plants was proposed by Katou and Furumoto in 1986. In the present paper, we analytically solved the equation in order to find the law describing the canal system. In the canal system, water transport is regulated linearly by solute transport under physiological conditions. The approximate solution of the differential equations defines the conditions of the structure and components of the apoplast canal for optimal water absorption. Water absorption during cell elongation in plants requires that the apoplast canal be composed of a cell wall with an appropriate diffusion coefficient for solute.  相似文献   

20.
In touch: plant responses to mechanical stimuli   总被引:14,自引:0,他引:14  
Braam J 《The New phytologist》2005,165(2):373-389
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号