首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 137 毫秒
1.
To investigate beneficial effects of mycorrhizal fungi to advanced leafy orchids, growth studies on the development of symbiotic seedlings of the orchid Cattleya (aclandiae x schoeffeldiana) x aclandiae were conducted in vitro over a period of 18 months using split plates with minerals and carbohydrates on one side and water agar on the other. Mycorrhizal infection and shoot and root growth of seedlings on the nutrient side were compared to growth on the water agar side with nutrient uptake by the orchid only possible via external mycorrhizal hyphae. Seed germination was followed by mycorrhizal infection and rapid development of protocorms on both nutrient and non-nutrient sides of the plates. With 0.5% starch, development of protocorms was sustained for a least 12 weeks, compared to only 6 weeks with 0.1% starch. Advanced protocorms with two small leaves and a smoll root were transferred at week 22 to new fungal plates. When harvested at week 43, plantlets on 0.5% starch (both nutrient and water agar sides) had 2.7 times the dry weight of plantlets on 0.1% starch. Shoot-root ratios were higher on the lower level of carbon. In all plantlets, mycorrhizal infection involved less than 5% of the root length. With zero, 0.1% or 0.5% starch, the roots were re-infected on transfer to fresh fungal plates but young roots that developed following the transfer stayed free of infection, Plantlets on 0.5% starch (nutrient and water agar side) after 18 months had longer roots than plantlets grown in the absence of starch or on 0.1% starch. Shoots were small but significantly larger on the nutrient side than on the water agar side, independent of the carbohydrate level. The shoot-root ratio was highest on the nutrient side with no starch present. In this latter case, plantlet development was steady but plantlets on the non-nutrient side developed slowly; thus there was little evidence of nutrient translocation by the mycorrhizal fungus from the nutrient to the non-nutrient side in the absence of carbohydrates. Mycorrhizal infection is discussed as a mechanism for heterotrophic carbon assimilation. In advanced leafy orchids of Cattleya, external carbon resulted in increased root growth, decreased shoot/root ratio and sometimes yellowish-green plantlets.  相似文献   

2.
The ability of ericoid and ectomycorrhizal fungi to utilize 14C-labelled lignin and O14CH3-labelled dehydropolymer of coniferyl alcohol as sole C sources has been assessed in pure culture studies. The results indicate that ericoid mycorrhizal fungi are more effective in degrading lignin than ectomycorrhizal fungi. Amongst the ectomycorrhizal fungi the facultative mycorrhizal fungus Paxillus involutus degraded lignin more readily than those which are normally considered to be obligately mycorrhizal fungi such as Suillus bovinus and Rhizopogon roseolus. The importance of these lignin degrading capabilities is discussed in relation to the predominance of specific mycorrhiza forms along a gradient of increasing organic matter and hence lignin content of soil.  相似文献   

3.
Hidetaka Umata 《Mycoscience》1997,38(3):335-339
To test the mycorrhizal function of heterobasidiomycetous fungi on achlorophyllous orchids and to examine the symbiotic fungal range of a myco-heterotrophic orchid,Erythrorchis ochobiensis, synthetic cultures of the orchid seed were carried out withAuricularia polytricha isolates from Japan and Mexico. After three and a half mo of incubation, 57.0–70.7% of seeds germinated but none of them showed further growth. When cultured on peat moss at 25°C, the germination rate was 8.7% in the presence of Mexican isolate and 18.0% in the presence of Japanese isolate. Some germinated seeds developed into protocorms, and several seeds incubated with the Mexican isolate developed into plantlets after 5 mo. Pelotons were observed in the cells of protocorms and roots. The results indicated that some heterobasidiomycetous fungi could form endomycorrhizas with a myco-heterotrophic orchid. The results also showed that the symbiont ofE. ochobiensis extends, at least experimentally, to Heterobasidiomycetes. The variances of germination rate and seedling growth were suggested to be affected by the difference of isolates and culture conditions.  相似文献   

4.
带叶兜兰种子原地共生萌发及有效菌根真菌的分离与鉴定   总被引:1,自引:0,他引:1  
为获得带叶兜兰(Paphiopedilum hirsutissimum)种子萌发的共生真菌,采用原地共生萌发技术获得了2株自然萌发的小幼苗,并分离和筛选出了有效的种子萌发共生菌——瘤菌根菌(Epulorhiza sp.)。为验证分离菌株对带叶兜兰种子萌发的有效性,将Phs34号菌株与带叶兜兰种子在灭菌后的原生境基质上进行室内共生萌发试验,结果表明,经过6周的培养,对照组没有观察到种子的萌发;接菌的种子胚明显膨大,突破种皮,形成原球茎,平均萌发率为(58.35±3.41)%。这表明分离得到的瘤菌根菌能促进带叶兜兰的种子萌发。  相似文献   

5.
Circa 1900, a farmer from the eastern US planted 11 American chestnut (Castanea dentata) seeds on a newly established farm near West Salem in western Wisconsin. These trees were very successful, producing a large stand of over 6,000 trees. Since this area is well outside the natural range of chestnut, these trees remained free from chestnut blight until 1987. In the West Salem stand, chestnuts are the dominant species of a mixed forest community, reminiscent of the chestnut–oak ecosystems of pre-1900 Appalachia. To identify putative mycorrhizal associates of chestnut in this unique forest, our approach was twofold: (1) an extensive fruiting body survey was conducted for four seasons that yielded approximately 100 putative mycorrhizal species and (2) a belowground molecular approach was used to generate DNA sequences of the internal transcribed spacer region from ectomycorrhizae. Unexpectedly, chestnut did not appear to be the dominant underground ectomycorrhizal-forming plant species. This study highlights the need to identify the plant host species when conducting belowground molecular-based surveys and provides preliminary identification of ectomycorrhizal fungi associated with a disjunct stand of American chestnut. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

6.
Application of network theory to potential mycorrhizal networks   总被引:5,自引:0,他引:5  
The concept of a common mycorrhizal network implies that the arrangement of plants and mycorrhizal fungi in a community shares properties with other networks. A network is a system of nodes connected by links. Here we apply network theory to mycorrhizas to determine whether the architecture of a potential common mycorrhizal network is random or scale-free. We analyzed mycorrhizal data from an oak woodland from two perspectives: the phytocentric view using trees as nodes and fungi as links and the mycocentric view using fungi as nodes and trees as links. From the phytocentric perspective, the distribution of potential mycorrhizal links, as measured by the number of ectomycorrhizal morphotypes on trees of Quercus garryana, was random with a short tail, implying that all the individuals of this species are more or less equal in linking to fungi in a potential network. From the mycocentric perspective, however, the distribution of plant links to fungi was scale-free, suggesting that certain fungus species may act as hubs with frequent connections to the network. Parallels exist between social networks and mycorrhizas that suggest future lines of study on mycorrhizal networks.  相似文献   

7.
We investigated the spatial distribution and taxonomic identity of mycorrhizal fungi colonizing the root systems of two threatened Cephalanthera species, C. falcata and C. erecta, in naturally regenerated forests. Peloton formation was observed in both plant species, confirming the existence of orchid mycorrhizas. For C. falcata, mycorrhization was significantly different among individuals, ranging from 14 to 63%, and no significant difference among C. erecta individuals was detected (57–68%). Mycorrhization among three growth directions of roots and between orchid species was not significantly different. The spatial distribution of mycorrhizas in both orchids showed significant differences, being most frequent at an apical position. Based on DNA sequencing and phylogenetic analyses, we inferred that the families Thelephoraceae and Sebacinaceae were mycobionts for C. falcata and Thelephoraceae for C. erecta. Our findings indicated that mycorrhizal colonization occurs at a distal position from the base of these orchid root systems and that mycorrhizal fungi are restricted to few ectomycorrhizal fungal families.  相似文献   

8.
While it is established that increasing atmospheric inorganic nitrogen (N) deposition reduces ectomycorrhizal fungal biomass and shifts the relative abundances of fungal species, little is known about effects of organic N deposition. The effects of organic and inorganic N deposition on ectomycorrhizal fungi may differ because responses to inorganic N deposition may reflect C-limitation. To compare the effects of organic and inorganic N additions on ectomycorrhizal fungi, and to assess whether host species may influence the response of ectomycorrhizal fungi to N additions, we conducted an N addition experiment at a field site in the New Jersey pine barrens. Seedlings of two host species, Quercus velutina (black oak) and Pinus rigida (pitch pine), were planted at the base of randomly-selected mature pitch pine trees. Nitrogen was added as glutamic acid, ammonium, or nitrate at a rate equivalent to 227.5 kg ha−1 y−1 for eight weeks, to achieve a total application of 35 kg ha−1 during the 10-week study period. Organic and inorganic N additions differed in their effects on total ectomycorrhizal root tip abundance across hosts, and these effects differed for individual morphotypes between oak and pine seedlings. Mycorrhizal root tip abundance across hosts was 90 % higher on seedlings receiving organic N compared to seedlings in the control treatment, while abundances were similar among seedlings receiving the inorganic N treatments and seedlings in the control. On oak, 33–83 % of the most-common morphotypes exhibited increased root tip abundances in response to the three forms of N, relative to the control. On pine, 33–66 % of the most-common morphotypes exhibited decreased root tip abundance in response to inorganic N, while responses to organic N were mixed. Plant chemistry and regression analyses suggested that, on oak seedlings, mycorrhizal colonization increased in response to N limitation. In contrast, pine root and shoot N and C contents did not vary in response to any form of N added, and mycorrhizal root tip abundance was not associated with seedling N or C status, indicating that pine received sufficient N. These results suggest that in situ organic and inorganic N additions differentially affect ectomycorrhizal root tip abundance and that ectomycorrhizal fungal responses to N addition may be mediated by host tree species.  相似文献   

9.
Urban environments are highly disturbed and fragmented ecosystems that commonly have lower mycorrhizal fungal species richness and diversity compared to rural or natural ecosystems. In this study, we assessed whether the mycorrhizal status and colonization of trees are influenced by the overall environment (rural vs. urban) they are growing in. Soil cores were collected from the rhizosphere of trees growing in urban and rural environments around southern Ontario. Roots were extracted from the soil cores to determine whether the trees were colonized by arbuscular mycorrhizal fungi, ectomycorrhizal fungi, or both, and to quantify the percent colonization of each type of mycorrhizal fungi. All 26 tree species were colonized by arbuscular mycorrhizal fungi, and seven tree species were dually colonized by arbuscular mycorrhizal and ectomycorrhizal fungi. Overall, arbuscular mycorrhizal and ectomycorrhizal fungal colonization was significantly (p < 0.001) lower in trees growing in urban compared to rural environments. It is not clear what ‘urban’ factors are responsible for the reduction in mycorrhizal fungal colonization; more research is needed to determine whether inoculating urban trees with mycorrhizal fungi would increase colonization levels and growth of the trees.  相似文献   

10.
The identity and ecological role of fungi in the mycorrhizal roots of 25 species of mature terrestrial orchids and in 17 species of field incubated orchid seedlings were examined. Isolates of symbiotic fungi from mature orchid mycorrhizas were basidiomycetes primarily in the generaCeratorhiza, Epulorhiza andMoniliopsis; a few unidentified taxa with clamped hyphae were also recovered. More than one taxon of peloton-forming fungus was often observed in the cleared and stained mycorrhizas. AlthoughCeratorhiza andEpulorhiza strains were isolated from the developing protocorms, pelotons of clamped hyphae were often presents in the cleared protocorms of several orchid species. These basidiomycetes are difficult to isolate and may be symbionts of ectotrophic plants. The higher proportion of endophytes bearing clamp connections in developing seeds than in the mycorrhizas is attributed to differences in the nutritional requirements of the fully mycotrophic protocorms and partially autotrophic plants. Most isolates ofCeratorhiza differed enzymatically fromEpulorhiza in producing polyphenol oxidases. Dual cultures with thirteen orchid isolates and five non-orchid hosts showed that some taxa can form harmless associations with non-orchid hosts. It is suggested that most terrestrial orchid mycorrhizas are relatively non-specific and that the mycobionts can be saprophytes, parasites or mycorrhizal associates of other plants.  相似文献   

11.
Hidetaka Umata 《Mycoscience》1997,38(3):355-357
In vitro germination of a myco-heterotrophic orchid,Erythrorchis ochobiensis, was tested in the presence of ectomycorrhizal fungi,Lyophyllum shimeji andTricholoma fulvocastaneum. Lyophyllum shimeji stimulated the germination after incubation for 1.5 mo. Although most germinated seeds did not grow further after 3 mo, several seeds developed into small protocorms but showed amorphous profiles. Fungal mycelia were observed in the germinated seeds and protocorms, but pelotons were not detected. Since the seeds did not germinate axenically, it may be suggested that the fungus has the ability to stimulate germination.  相似文献   

12.
Vaario LM  Xing ST  Xie ZQ  Lun ZM  Sun X  Li YH 《Mycorrhiza》2006,16(2):137-142
Cathaya argyrophylla, a critically endangered conifer, is found to grow at four isolated areas located in subtropical mountains of China. To examine the involvement and usefulness of mycorrhizas for sustaining the population of this tree, we compared the root system, morphology, and structure of mycorrhizal roots of C. argyrophylla, which were collected from a natural stand and an artificial stand, each grown at a different location. More mycorrhizal roots were found for trees from an artificial stand. The presence of extramatrical mycelium, mantle, and Hartig net revealed that C. argyrophylla formed an ectomycorrhizal association in both sampling sites. Starch granules were found in mycorrhizal roots collected only from a natural stand. The aseptic synthesis of C. argyrophylla and Cenococcum geophilum was established for the first time in vitro. Typical ectomycorrhizas formed on seedlings on RM medium containing 0.1 g/l glucose, 5 weeks after inoculation. By light microscopy, the synthesized mycorrhizas showed a thin mantle from which emanated extramatrical hyphae and highly branched Hartig net. A simple, rapid, and convenient mycorrhiza synthesis system was developed, which facilitates further studies on ectomycorrhizal development of C. argyrophylla.  相似文献   

13.
菌根是真菌与植物之间形成的互惠互利的营养共生体,对生态环境有重大的意义。外生菌根真菌与植物互作机制以及真菌基因功能的深入研究都需要对菌根真菌进行遗传转化,本研究以外生菌根真菌模式生物双色蜡蘑(Laccaria bicolor)为研究对象,选择细胞核中的核小体蛋白H2B基因为目的基因,以pCEBN为表达载体,融合红色荧光蛋白,最终构建在真菌中表达的双元载体,使用根瘤农杆菌介导转化法转化双色蜡蘑菌丝,随后利用PCR对真菌转化子进行验证后,通过激光共聚焦显微镜观察到菌丝细胞核中的红色荧光,成功将融合荧光蛋白转化菌根真菌,为后续研究菌根真菌中基因的亚细胞定位提供了实验平台。结果表明,利用双元载体和农杆菌转化方法,建立了高效的双色蜡蘑转化体系(93.33%),在激光共聚焦显微镜下观察到菌丝细胞核中红色荧光信号,验证了融合荧光蛋白在双色蜡蘑中的成功表达。本研究成功地构建了菌根真菌中的核小体蛋白和红色荧光蛋白融合表达的真菌转化体系。  相似文献   

14.
Gehring CA  Mueller RC  Whitham TG 《Oecologia》2006,149(1):158-164
Although both environment and genetics have been shown to affect the mycorrhizal colonization of host plants, the impacts of these factors on hosts that can be dually colonized by both ectomycorrhizal (EM) and arbuscular mycorrhizal (AM) fungi are less understood. We examined the influence of environment and host crosstype on the EM and AM colonization of cottonwoods (Populus angustifolia and natural hybrids) by comparing levels of colonization of trees growing in common gardens that differed in elevation and soil type. We also conducted a supplemental watering experiment to determine the influence of soil moisture on AM and EM colonization. Three patterns emerged. First, garden location had a significant impact on mycorrhizal colonization, such that EM colonization was 30% higher and AM colonization was 85% lower in the higher elevation garden than the lower elevation garden. Second, crosstype affected total (EM + AM) colonization, but did not affect EM or AM colonization. Similarly, a significant garden × crosstype interaction was found for total colonization, but not for EM or AM colonization. Third, experimental watering resulted in 33% higher EM colonization and 45% lower AM colonization, demonstrating that soil moisture was a major driver of the mycorrhizal differences observed between the gardens. We conclude that environment, particularly soil moisture, has a larger influence on colonization by AM versus EM fungi than host genetics, and suggest that environmental stress may be a major determinant of mycorrhizal colonization in dually colonized host plants.  相似文献   

15.
以西南亚高山针叶林建群种粗枝云杉(Picea asperata)为研究对象,采用红外加热模拟增温结合外施氮肥(NH4NO3 25 g N m-2 a-1)的方法,研究连续3a夜间增温和施肥对云杉幼苗外生菌根侵染率、土壤外生菌根真菌生物量及其群落多样性的影响。结果表明:夜间增温对云杉外生菌根侵染率的影响具有季节性及根级差异。夜间增温对春季(2011年5月)云杉1级根,夏季(2011年7月)和秋季(2010年10月)云杉2级根侵染率影响显著。除2011年7月1级根外,施氮对云杉1、2级根侵染率无显著影响。夜间增温对土壤中外生菌根真菌的生物量和群落多样性无显著影响,施氮及增温与施氮联合处理使土壤中外生菌根真菌生物量显著降低,但却提高了外生菌根真菌群落的多样性。这说明云杉幼苗外生菌根侵染率对温度较敏感,土壤外生菌根真菌生物量及其群落多样性对施氮较敏感。这为进一步研究该区域亚高山针叶林地下过程对全球气候变化的响应机制提供了科学依据。  相似文献   

16.
The diversity of mycorrhizal fungi associated with an introduced weed-like South African orchid (Disa bracteata) and a disturbance-intolerant, widespread, native West Australian orchid (Pyrorchis nigricans) were compared by molecular identification of the fungi isolated from single pelotons. Molecular identification revealed both orchids were associated with fungi from diverse groups in the Rhizoctonia complex with worldwide distribution. Symbiotic germination assays confirmed the majority of fungi isolated from pelotons were mycorrhizal and a factorial experiment uncovered complex webs of compatibility between six terrestrial orchids and 12 fungi from Australia and South Africa. Two weed-like (disturbance-tolerant rapidly spreading) orchids — D. bracteata and the indigenous Australian Microtis media, had the broadest webs of mycorrhizal fungi. In contrast, other native orchids had relatively small webs of fungi (Diuris magnifica and Thelymitra crinita), or germinated exclusively with their own fungus (Caladenia falcata and Pterostylis sanguinea). Orchids, such as D. bracteata and M. media, which form relationships with diverse webs of fungi, had apparent specificity that decreased with time, as some fungi had brief encounters with orchids that supported protocorm formation but not subsequent seedling growth. The interactions between orchid mycorrhizal fungi and their hosts are discussed.  相似文献   

17.
Ectomycorrhizal synthesis on seedlings of Afzelia quanzensis was initiated in the greenhouse and in the field using basidiospores or soil inoculum originating from fungi associated with adult trees of A. quanzensis, Brachystegia microphylla, B. spiciformis, and Julbernardia globiflora. Of the spore inocula used, only a Pisolithus sp. associated with adult A. quanzensis formed mycorrhizae. Seedlings raised in contact with all soil inocula formed mycorrhizae; however, the mycorrhizal types formed differed between soil inoculum used in the greenhouse and soil inoculum directly used in the field. A. quanzensis has a low specificity for mycorrhizal association. The concepts of ectomycorrhizal succession are also applicable to African savanna ecosystems.  相似文献   

18.
Th effect of fenvalerate 20% EC (a synthetic pyrethroid) on the growth of two ectomycorrhizal fungi, Thelephora terrestris and Laccaria laccata, was studied in vitro. In the case of T. terrestris, mycelial growth was promoted at lower concentrations of the insecticide but inhibited at higher concentrations; mycelial growth of L. laccata decreased with increase in concentration. The effect of the insecticide at three concentrations (0.25, 0.5, 1.5 ppm) was also studied on ectomycorrhizal formation in 4-month-old seedlings of Pinus patula in nursery trials. At lower concentrations the insecticide had no significant effect on mycorrhizal formation.  相似文献   

19.
Melaleuca quinquenervia (melaleuca) is a native of Australia but has become an invasive plant in Florida, USA. We conducted a long-term demographic study of melaleuca in three sections (central, transitional, and peripheral) of monoculture stands located in Florida, and quantified absolute density, diameter at breast height and basal area of trees by section at three sites. Additionally, we monitored the impacts of natural enemy (insects and fungi) on melaleuca populations which became apparent after 2001. Both absolute density and basal area, from before (1997–2001) and after noticeable natural-enemy impact (2002–2005), were compared. Prior to the natural-enemy impact, absolute density of melaleuca trees declined primarily due to self-thinning and associated losses of small trees, but diameter at breast height increased, as did the basal area. Later during the period when natural enemies prevailed, absolute density declined at a significantly greater rate across all sections but was highest at the periphery. The decrease in mean absolute density and basal area/ha of melaleuca during the natural-enemy impacted period coincided with the increased incidence of the populations of plant-feeding insects and fungi. The mean diameter at breast height continued to increase in all sections of the stands throughout the study period. An increasing trend in basal area prior to natural-enemy impact was reversed after increase in natural-enemy abundance and noticeable impact in all three sections of the stands. These findings lend support to a growing body of literature that implicates natural enemies as increasingly important density-independent regulators of M. quinquenervia populations. The U.S. Government's right to retain a non-exclusive, royalty-free license in and to any copyright is acknowledged  相似文献   

20.
The main objectives of this study were (1) to describe the diversity of mycorrhizal fungal communities associated with Uapaca bojeri, an endemic Euphorbiaceae of Madagascar, and (2) to determine the potential benefits of inoculation with mycorrhizal fungi [ectomycorrhizal and/or arbuscular mycorrhizal (AM) fungi] on the growth of this tree species and on the functional diversity of soil microflora. Ninety-four sporophores were collected from three survey sites. They were identified as belonging to the ectomycorrhizal genera Afroboletus, Amanita, Boletus, Cantharellus, Lactarius, Leccinum, Rubinoboletus, Scleroderma, Tricholoma, and Xerocomus. Russula was the most frequent ectomycorrhizal genus recorded under U. bojeri. AM structures (vesicles and hyphae) were detected from the roots in all surveyed sites. In addition, this study showed that this tree species is highly dependent on both types of mycorrhiza, and controlled ectomycorrhization of this Uapaca species strongly influences soil microbial catabolic diversity. These results showed that the complex symbiotic status of U. bojeri could be managed to optimize its development in degraded areas. The use of selected mycorrhizal fungi such the Scleroderma Sc1 isolate in nursery conditions could be of great interest as (1) this fungal strain is very competitive against native symbiotic microflora, and (2) the fungal inoculation improves the catabolic potentialities of the soil microflora.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号