首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sexually transmitted infections (STIs) are predicted to play an important role in the evolution of host mating strategies, and vice versa, yet our understanding of host-STI coevolution is limited. Previous theoretical work has shown mate choice can evolve to prevent runaway STI virulence evolution in chronic, sterilizing infections. Here, I generalize this theory to examine how a broader range of life-history traits influence coevolution; specifically, how host preferences for healthy mates and STI virulence coevolve when infections are acute and can cause mortality or sterility, and hosts do not form long-term sexual partnerships. I show that mate choice reduces both mortality and sterility virulence, with qualitatively different outcomes depending on the mode of virulence, costs associated with mate choice, recovery rates, and host lifespan. For example, fluctuating selection—a key finding in previous work—is most likely when hosts have moderate lifespans, STIs cause sterility and long infections, and costs of mate choice are low. The results reveal new insights into the coevolution of mate choice and STI virulence as different life-history traits vary, providing increased support for parasite-mediated sexual selection as a potential driver of host mate choice, and mate choice as a constraint on the evolution of virulence.  相似文献   

2.
Many well-studied coevolutionary interactions between predators and prey or hosts and parasites are mediated by quantitative traits. In some interactions, such as those between cuckoos and their hosts, interactions are mediated by the degree of phenotype matching among species, and a significant body of theory has been developed to predict the coevolutionary dynamics and outcomes of such interactions. In a large number of other cases, however, interactions are mediated by the extent to which the phenotype of one species exceeds that of the other. For these cases-which are arguably more numerous-few theoretical predictions exist for coevolutionary dynamics and outcomes. Here we develop and analyze mathematical models of interspecific interactions mediated by the extent to which the quantitative trait of one species exceeds that of the other. Our results identify important differences from previously studied models based on trait matching. First, our results show that cyclical dynamics are possible only if the strength of coevolutionary selection exceeds a threshold and stabilizing selection acts on the interacting traits. Second, our results demonstrate that significant levels of genetic polymorphism can be maintained only when cyclical dynamics occur. This result leads to the unexpected prediction that maintenance of genetic polymorphism is enhanced by strong selection. Finally, our results demonstrate that there is no a priori reason to expect the traits of interacting species should match in any literal sense, even in the absence of gene flow among populations.  相似文献   

3.
Antagonistic coevolution over productivity gradients   总被引:5,自引:0,他引:5  
This study addresses the question of how spatial heterogeneity in prey productivity and migration act to determine geographic patterns in antagonistic coevolution with a predator. We develop and analyze a quantitative coevolutionary model for a predator-prey interaction. If the model is modified appropriately, the results could broadly apply to multispecies communities and to herbivore-plant, parasite-host, and parasitoid-host associations. Model populations are distributed over a gradient in prey birth rate (as a measure of productivity). Each population, in each patch, is made up of a suite of strains. Each strain of the predator has a certain ability to successfully attack each strain of the prey. We consider scenarios of isolated patches, global migration, and stepping-stone (i.e., local) migration over a linear string of patches. The most pervasive patterns are the following: investments in predator offense and prey defense are both maximal in the patches of highest prey productivity; when there are no constraints on maximal investment, mean predation evolves to highest levels in the most productive patches; similarly, the predator has a greater impact (measured as the percentage reduction in prey density) on the prey population in high productivity patches as compared with low productivity ones-in spite (even after evolution) of prey abundance being highest in the most productive patches; and migration has the net effect of shunting relatively offensive and defensive strains from productive patches to nonproductive ones, potentially resulting in the elimination of otherwise rare, low-investment clones. A modification of the model to gene-for-gene type interactions predicts that generalist strains (in terms of the range of strains the predator can exploit or the prey can fend off) dominate in productive areas of the prey, whereas specialists prevail in marginal habitats. Assuming a wide range of productivities over the prey's geographical distribution, the greatest strain diversity should be found in habitats of intermediate productivity. We discuss the implications of our study for adaptation and conservation. Empirical studies are in broad accord with our findings.  相似文献   

4.
Temporal resource fluctuations could affect the strength of antagonistic coevolution through population dynamics and costs of adaptation. We studied this by coevolving the prey bacterium Serratia marcescens with the predatory protozoa Tetrahymena thermophila in constant and pulsed-resource environments for approximately 1300 prey generations. Consistent with arms race theory, the prey evolved to be more defended, whereas the predator evolved to be more efficient in consuming the bacteria. Coevolutionary adaptations were costly in terms of reduced prey growth in resource-limited conditions and less efficient predator growth on nonliving resource medium. However, no differences in mean coevolutionary changes or adaptive costs were observed between environments, even though resource pulses increased fluctuations and mean densities of coevolving predator populations. Interestingly, a surface-associated prey defence mechanism (bacterial biofilm), to which predators were probably unable to counter-adapt, evolved to be stronger in pulsed-resource environment. These results suggest that temporal resource fluctuations can increase the asymmetry of antagonistic coevolution by imposing stronger selection on one of the interacting species.  相似文献   

5.

Background  

One of the big remaining challenges in evolutionary biology is to understand the evolution and maintenance of meiotic recombination. As recombination breaks down successful genotypes, it should be selected for only under very limited conditions. Yet, recombination is very common and phylogenetically widespread. The Red Queen Hypothesis is one of the most prominent hypotheses for the adaptive value of recombination and sexual reproduction. The Red Queen Hypothesis predicts an advantage of recombination for hosts that are coevolving with their parasites. We tested predictions of the hypothesis with experimental coevolution using the red flour beetle, Tribolium castaneum, and its microsporidian parasite, Nosema whitei.  相似文献   

6.
A bacteriophage of an aerobic, gram-negative, rod-shaped halophilic bacterium, provisionally named Pseudomonas sp. G3, is described. The phage has a head and a tail and is similar in appearance to Salmonella phage Beccles. It infects its bacterial host at all salt concentrations in which the bacteirum is able to grow. In contrast to phages of halophilic archaebacteria, the newly-described phage is relatively stable in the absence of salt. It also infects Vibrio costicola and two unidentified halophilic eubacteria.Abbreviations PPT proteose peptone-tryptone medium - pfu plaque-forming unit - G+C guanine + cytidine content, mol %  相似文献   

7.
Marine transducing bacteriophage attacking a luminous bacterium   总被引:4,自引:0,他引:4  
The isolation and partial characterization of a marine bacteriophage attacking a strain of luminous bacteria is described, including some physical, biological, and genetic properties. It is a DNA phage of density of 1.52 with a long flexible tail and an apparently icosohedral head. With respect to stability in suspension, it has a rather specific requirement for the sodium ion in high concentration; it is further stabilized by the addition of calcium and magnesium ions. These same ions are likewise all required for both good plating efficiency and plaque uniformity. Although it goes through a typical lytic growth cycle (about 45 min), with a burst size of 100, and no stable lysogens have been isolated, it is nevertheless a transducing phage specifically for the tryptophan region, transducing several, but not all, independently isolated Trp auxotrophs to protrophy. No other auxotrophs of a variety of amino acids were transduced by this phage to prototrophy. Phage infection does not change the normal expression of the luminescent system, and light remains at near normal levels until cell lysis occurs.  相似文献   

8.
Coevolution is one of the major drivers of complex dynamics in population ecology. Historically, antagonistic coevolution in victim-exploiter systems has been a topic of special interest, and involves traits with various genetic architectures (e.g., the number of genes involved) and effects on interactions. For example, exploiters may need to have traits that “match” those of victims for successful exploitation (i.e., a matching interaction), or traits that exceed those of victims (i.e., a difference interaction). Different models exist which are appropriate for different types of traits, including Mendelian (discrete) and quantitative (continuous) traits. For models with multiple Mendelian traits, recent studies have shown that antagonistic coevolutionary patterns that appear as matching interactions can arise due to multiple difference interactions with costs of having large trait values. Here we generalize their findings to quantitative traits and show, analogously, that the multidimensional difference interactions with costs sometimes behave qualitatively the same as matching interactions. While previous studies in quantitative genetics have used the dichotomy between matching and difference frameworks to explore coevolutionary dynamics, we suggest that exploring multidimensional trait space is important to examine the generality of results obtained from one-dimensional traits.  相似文献   

9.
Understanding the conditions under which rapid evolutionary adaptation can prevent population extinction in deteriorating environments (i.e. evolutionary rescue) is a crucial aim in the face of global climate change. Despite a rapidly growing body of work in this area, little attention has been paid to the importance of interspecific coevolutionary interactions. Antagonistic coevolution commonly observed between hosts and parasites is likely to retard evolutionary rescue because it often reduces population sizes, and results in the evolution of costly host defence and parasite counter-defence. We used experimental populations of a bacterium Pseudomonas fluorescens SBW25 and a bacteriophage virus (SBW25Φ2), to study how host-parasite coevolution impacts viral population persistence in the face of gradually increasing temperature, an environmental stress for the virus but not the bacterium. The virus persisted much longer when it evolved in the presence of an evolutionarily constant host genotype (i.e. in the absence of coevolution) than when the bacterium and virus coevolved. Further experiments suggest that both a reduction in population size and costly infectivity strategies contributed to viral extinction as a result of coevolution. The results highlight the importance of interspecific evolutionary interactions for the evolutionary responses of populations to global climate change.  相似文献   

10.
11.
The fitness consequences of deleterious mutations are sometimes greater when individuals are parasitized, hence parasites may result in the more rapid purging of deleterious mutations from host populations. The significance of host deleterious mutations when hosts and parasites antagonistically coevolve (reciprocal evolution of host resistance and parasite infectivity) has not previously been experimentally investigated. We addressed this by coevolving the bacterium Pseudomonas fluorescens and a parasitic bacteriophage in laboratory microcosms, using bacteria with high and low mutation loads. Directional coevolution between bacterial resistance and phage infectivity occurred in all populations. Bacterial population fitness, as measured by competition experiments with ancestral genotypes in the absence of phage, declined with time spent coevolving. However, this decline was significantly more rapid in bacteria with high mutation loads, suggesting the cost of bacterial resistance to phage was greater in the presence of deleterious mutations (synergistic epistasis). As such, resistance to phage was more costly to evolve in the presence of a high mutation load. Consistent with these data, bacteria with high mutation loads underwent less rapid directional coevolution with their phage populations, and showed lower levels of resistance to their coevolving phage populations. These data suggest that coevolution with parasites increases the rate at which deleterious mutations are purged from host populations.  相似文献   

12.
Genetic variation in natural populations is a prime prerequisite allowing populations to respond to selection, but is under constant threat from forces that tend to reduce it, such as genetic drift and many types of selection. Haldane emphasized the potential importance of parasites as a driving force of genetic diversity. His theory has been taken for granted ever since, but despite numerous studies showing correlations between genetic diversity and parasitism, Haldane''s hypothesis has rarely been tested experimentally for unambiguous support. We experimentally staged antagonistic coevolution between the host Tribolium castaneum and its natural microsporidian parasite, Nosema whitei, to test for the relative importance of two separate evolutionary forces (drift and parasite-induced selection) on the maintenance of genetic variation. Our results demonstrate that coevolution with parasites indeed counteracts drift as coevolving populations had significantly higher levels of heterozygosity and allelic diversity. Genetic drift remained a strong force, strongly reducing genetic variation and increasing genetic differentiation in small populations. To our surprise, differentiation between the evolving populations was smaller when they coevolved with parasites, suggesting parallel balancing selection. Hence, our results experimentally vindicate Haldane''s original hypothesis 60 years after its conception.  相似文献   

13.
Coevolution commonly occurs in spatially heterogeneous environments, resulting in variable selection pressures acting on coevolving species. Dispersal across such environments is predicted to have a major impact on local coevolutionary dynamics. Here, we address how co‐dispersal of coevolving populations of host and parasite across an environmental productivity gradient affected coevolution in experimental populations of bacteria and their parasitic viruses (phages). The rate of coevolution between bacteria and phages was greater in high‐productivity environments. High‐productivity immigrants (~2% of the recipient population) caused coevolutionary dynamics (rates of coevolution and degree of generalist evolution) in low‐productivity environments to be largely indistinguishable from high‐productivity environments, whereas immigration from low‐productivity environments (~0.5% of the population) had no discernable impact. These results could not be explained by demography alone, but rather high‐productivity immigrants had a selective advantage in low‐productivity environments, but not vice versa. Coevolutionary interactions in high‐productivity environments are therefore likely to have a disproportionate impact on coevolution across the landscape as a whole.  相似文献   

14.
The isolation and characterization of a novel bacteriophage active against the obligately alkaliphilic bacterium Bacillus clarkii is described. The bacteriophage, designated BCJA1, is a member of the Siphoviridae family with a B1 morphology. It possesses an isometric head, which measures 65 nm between opposite apices, and a noncontractile tail of 195 nm length. It had a buoyant density of 1.518 g/ml and an estimated particle mass of 37 × 107 daltons. BCJA1 was stable over the pH range of 6–11. A one-step growth experiment conducted at pH 10 demonstrated a latent period of about 40 min and a burst size of approximately 40. The purified bacteriophage appeared to consist of 10 proteins with the major head and tail proteins likely to be of molecular weight 36 500 and 28 000, respectively. The genome size was estimated to be between 32.1 and 34.8 kb. The percent G + C content of purified bacteriophage DNA was 45.6. The wildtype bacteriophage is temperate but a clear plaque mutant was isolated. Received: May 25, 1997 / Accepted: August 5, 1997  相似文献   

15.
棉花根际固氮菌、解磷菌及解钾菌的相互作用   总被引:3,自引:0,他引:3  
目的通过对棉花根际促生细菌N2126、P1108和K2116菌株单独接种和混合接种,根据这些菌株的固氮、解磷、解钾能力和细胞数量的变化,了解它们之间的相互作用。方法将这3株菌株设置4个不同的组合:N2126+P1108、P1108+K2116、N2126+K2116及N2126+P1108+K2116,分别测定培养液中全氮含量,水溶性磷、钾含量和细胞数量。结果P1108对N2126的生长有促进作用但抑制K2116的生长,N2126和K2116之间存在拮抗作用。N2126、P1108和K2116混合培养后,三者细胞数量分别占培养液中细胞总数的6.4%、89.2%和4.4%;培养液中的全氮含量比不接种时下降了0.7%;水溶性磷、钾含量比不接种时分别增加了19.0%和12.2%。结论P1108为3株菌株混合培养时的优势菌株,3株菌株混合培养有助于磷、钾释放。  相似文献   

16.
17.
P4 is a satellite phage which relies on a helper such as P2 to supply the gene products necessary for particle construction and cell lysis (Six, 1975). P4 can activate the expression of late genes from a P2 helper phage, using a mechanism different from that employed by the helper. In the presence of P4, replication of P2 DNA is not required for late gene expression (Six & Lindqvist, 1971), and the polar effects of P2 amber mutations are suppressed.Despite its small size P4 codes for two late proteins as well as two early proteins. One of the P4 early proteins is that the product of gene α. The expression of P4 late genes is stimulated by the helper phage. Thus the P2 and P4 chromosomes exhibit reciprocal transactivation.The presence of the P4 genome causes the P2 head proteins to form a head smaller than that found after infection by P2 (Gibbs et al., 1973). P4 late proteins associate with head-like structures and may determine the small size of P4 heads.  相似文献   

18.
19.
Coevolution is increasingly recognized as an important process structuring geographic variation in the form of selection for many populations. Here we consider the importance of a geographic mosaic of coevolution to patterns of crossbill (Loxia) diversity in the northern boreal forests of North America. We examine the relationships between geographic variation in cone morphology, bill morphology, and feeding performance to test the hypothesis that, in the absence of red squirrels (Tamiasciurus hudsonicus), black spruce (Picea mariana) has lost seed defenses directed at Tamiasciurus and that red crossbills (L curvirostra) and black spruce have coevolved in an evolutionary arms race. Comparisons of cone morphology and several indirect lines of evidence suggest that black spruce has evolved defenses in response to Tamiasciurus on mainland North America but has lost these defenses on Newfoundland. Cone traits that deter crossbills, including thicker scales that require larger forces to separate, are elevated in black spruce on Newfoundland, and larger billed crossbills have higher feeding performances than smaller billed crossbills on black spruce cones from Newfoundland. These results imply that the large bill of the Newfoundland crossbill (L. c. percna) evolved as an adaptation to the elevated cone defenses on Newfoundland and that crossbills and black spruce coevolved in an evolutionary arms race on Newfoundland during the last 9000 years since glaciers retreated. On the mainland where black spruce is not as well defended against crossbills, the small-billed white-winged crossbill (L leucoptera leucoptera) is more efficient and specializes on seeds in the partially closed cones. Finally, reciprocal adaptations between crossbills and conifers are replicated in black spruce and Rocky Mountain lodgepole pine (Pinus contorta ssp. latifolia), with coevolution most pronounced in isolated populations where Tamiasciurus are absent as a competitor. This study further supports the role of Tamiasciurus in determining the selection mosaic for crossbills and suggests that a geographic mosaic of coevolution has been a prominent factor underlying the diversification of North American crossbills.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号