首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 45 毫秒
1.
Abstract: The cellular distribution of gangliosides in the cerebellum was studied in a series of adult mouse mutants that lose specific populations of neurons. The weaver ( wv ) mutation destroys the vast majority of granule cells, whereas the Purkinje cell degeneration mutation ( pcd ) destroys the vast majority of Purkinje cells. The staggerer ( sg ) and lurcher ( Lc ) mutations, on the other hand, destroy the vast majority of both granule and Purkinje cells. A proliferation of reactive glial cells, which occurs as a consequence of neuronal loss, has been reported in the sg/sg and pcd/pcd mutants, but not in the wv/wv mutant. Compared with the normal (+/+) mice, the concentration (μg/100 mg dry weight) of GD1a was significantly reduced in those mutants that lost granule cells, but was not reduced in the pcd/pcd mutant. The concentration of GTIa, on the other hand, was significantly reduced in those mutants that lost Purkinje cells, but was not reduced in the wv/wv mutant. A significant elevation in the concentration of GD3, which may be related to the proliferation of reactive glial cells, was observed in the pcd/pcd, sglsg , and Lc /+ mutants, but was not observed in the wv/wv mutant. Because these ganglioside abnormalities were confined to the cerebellum, they cannot result from genetic defects in ganglioside metabolism. Instead, these abnormalities result from a differential enrichment of gangliosides in neural membranes. Our findings suggest that GDT1a is more heavily concentrated in granule cells than Purkinje cells, whereas the opposite appears true for GTla. It also appears that GD3 is enriched in reactive glial cells and may play an important role during the morphological transformation of neural membranes.  相似文献   

2.
We analyzed glycosphingolipids from normal lymph node cells of seven cattle and lymph node cells of eight cattle with enzootic bovine leukosis. The neutral glycosphingolipids and gangliosides were analyzed by thin-layer chromatography. Both normal and tumorous lymph node cells had GlcCer, LacCer, and GbOse3Cer as major neutral glycosphingolipids. In the ganglioside fraction, GM3 was the predominant component in both normal and tumorous lymph node cells, and another component, ganglioside Gx fraction, was also prominent in tumorous lymph node cells. The structure of this ganglioside Gx fraction was elucidated by thin-layer chromatography, sugar analysis, neuraminidase digestion, and permethylation studies. This ganglioside Gx fraction was found to be a mixture of four ganglioside species. The structures of individual gangliosides Gx (1 to 4) were characterized as follows. 1: GD3, NeuAc alpha 2-8NeuAc alpha 2-3Gal1-4Glc-Cer. 2: GD3, NeuAc alpha 2-8NeuGc alpha 2-3Gal1-4Glc-Cer. 3: GD3, NeuGc alpha 2-8NeuAc alpha 2-3Gal1-Glc-Cer. 4: GD3, NeuGc alpha 2-8NeuGc alpha 2-3Gal1-4Glc-Cer. These GD3 species may be formed as a result of the induced synthesis inassociation with malignant transformation.  相似文献   

3.
Gangliosides were isolated from Trypanosoma brucei and analyzed by thin-layer chromatography (TLC) and TLC immunostaining test. Four species of gangliosides, designated as G-1, G-2, G-3, and G-4, were separated by TLC. G-1 ganglioside had the same TLC migration rate as GM3. In contrast, G-2, G-3, and G-4 gangliosides migrated a little slower than GM1, GD1a, and GD1b, respectively. To characterize the molecular species of gangliosides from T. brucei, G-1, G-2, G-3, and G-4 gangliosides were purified and analyzed by TLC immunostaining test with monoclonal antibodies against gangliosides. G-1 ganglioside showed the reactivity to the monoclonal antibody against ganglioside GM3. G-2 was recognized by the anti-GM1 monoclonal antibody. G-3 showed reaction with the monoclonal antibody to GD1a. G-4 had the reactivity to anti-GD1b monoclonal antibody. Using 4 kinds of monoclonal antibodies, we also studied the expression of GM3, GM1, GD1a, and GD1b in T. brucei parasites. GM3, GM1, GD1a, and GD1b were detected on the cell surface of T. brucei. These results suggest that G-1, G-2, G-3, and G-4 gangliosides are GM3 (NeuAc alpha2-3Gal beta1-4Glc beta1-1Cer), GM1 (Gal beta1-3GalNAc beta1-4[NeuAc alpha2-3]Gal beta1-4Glc beta1-1Cer), GD1a (NeuAc alpha2-3Gal beta1-3GalNAc beta1-4[NeuAc alpha2-3]Gal beta1-4Glc beta1-1Cer), and GD1b (Gal beta1-3GalNAc beta1-4[NeuAc alpha2-8NeuAc alpha2-3]Gal beta1-4Glc beta1-1Cer), respectively, and also that they are expressed on the cell surface of T. brucei.  相似文献   

4.
Mucopolysaccharidosis I (MPS I) is a congenital disorder caused by the deficiency of α-l-iduronidase (IDUA), with the accumulation of glycosaminoglycans (GAGs) in the CNS. Although GAG toxicity is not fully understood, previous works suggest a GAG-induced alteration in neuronal membrane composition. This study is aimed to evaluate the levels and distribution of gangliosides and cholesterol in different brain regions (cortex, cerebellum, hippocampus and hypothalamus) in a model using IDUA knockout (KO) mice (C57BL/6). Lipids were extracted with chloroform–methanol and then total gangliosides and cholesterol were determined, followed by ganglioside profile analyses. While no changes in cholesterol content were observed, the results showed a tissue dependent ganglioside alteration in KO mice: a total ganglioside increase in cortex and cerebellum, and a selective presence of GM3, GM2 and GD3 gangliosides in the hippocampus and hypothalamus. To elucidate this, we evaluated gene expression of ganglioside synthesis (GM3, GD3 and GM2/GD2 synthases) and degradation of (Neuraminidase1) enzymes in the cerebellum and hippocampus by RT-sq-PCR. The results obtained with KO mice showed a reduced expression of GD3 and GM2/GD2 synthases and Neuraminidase1 in cerebellum; and a decrease in GM2/GD2 synthase and Neuraminidase1 in the hippocampus. These data suggest that the observed ganglioside changes result from a combined effect of GAGs on ganglioside biosynthesis and degradation.  相似文献   

5.
A sensitive assay system for receptor activity of gangliosides to paramyxovirus was developed. This system involves incorporation of gangliosides into neuraminidase-treated chicken erythrocytes (asialoerythrocytes) followed by estimation of virus-mediated agglutination and hemolysis. The asialoerythrocytes coated with I-active ganglioside (Sia alpha 2-3Gal beta 1-4GlcNAc beta 1-3(Gal alpha 1-3Gal beta 1-4GlcNAc beta 1-6)Gal beta 1-4GlcNAc beta 1-3Gal beta 1-4Glc beta 1-Cer) were effectively agglutinated by hemagglutinating virus of Japan (HVJ, Sendai virus). The hemolysis of the asialoerythrocytes mediated by HVJ was restored to the highest level by labeling the cells with gangliosides possessing lacto-series oligosaccharide chains, i.e., I-active ganglioside, N-acetylneuraminosylparagloboside (SiaPG(NeuAc)), and i-active ganglioside (Sia alpha 2-3Gal beta 1-4GlcNAc beta 1-3Gal beta 1-4GlcNAc beta 1-3Gal beta 1-4Glc beta 1-Cer). The specific receptor activity of ganglioside GD1a possessing a gangliotetraose chain was lower than those of the gangliosides described above. Gangliosides GM3, GD3, GM1a, GD1b, SiaPG(NeuGc) showed little effect on the restoration of HVJ-mediated hemolysis. On infection with Newcastle disease virus (NDV), the highest specific restoration of lysis was found in chicken asialoerythrocytes coated with SiaPG(NeuAc or NeuGc) and GM3(NeuAc or NeuGc), whereas those coated with I-active ganglioside, GD3, GM1a, and GD1b showed very low NDV-mediated hemolysis. The above results indicate that the determinants of receptor for HVJ contain sialylated branched and/or linear lacto-series oligosaccharides carried by I,i-active gangliosides and SiaPG(NeuAc) and sialosylgangliotetraose chain carried by GD1a. The determinants for NDV are carried by SiaPG(NeuAc or NeuGc) containing linear lacto-series oligosaccharide and GM3(NeuAc or NeuGc). The absence of detectable binding of free oligosaccharides obtained from I-active ganglioside and sialoglycoprotein GP-2 isolated from bovine erythrocyte membranes as HVJ receptor (Suzuki, Y., et al. J. Biochem. (1983) 93, 1621-1633; (1984) 95, 1193-1200) indicates that HVJ recognizes the sialooligosaccharides oriented out of the lipid bilayer in the cell membranes where the hydrophobic ceramide or peptide backbone of the receptor is integrated.  相似文献   

6.
In this study, brain gangliosides in prenatal and postnatal human life and Alzheimer's disease were analyzed. Immunohistochemically, the presence of the "c"-series of gangliosides (GQ1c) was only registered in the embryonic brain at 5 weeks of gestation. Biochemical results indicated a two-fold increase in ganglioside concentration in the human cortex between 16 and 22 weeks of gestation. The increasing ganglioside concentration was based on an increasing GD1a ganglioside fraction in all regions analyzed except in the cerebellar cortex, which was characterized by increasing GT1b. During prenatal human development, regional differences in ganglioside composition could only be detected between the cerebrum ("a"-pathway) and the cerebellum ("b"-pathway). Between birth and 20-30 years of age, a cerebral neocortical difference of ganglioside composition occurred, characterized by the lowest GD1a in visual cortex. Analyzing the composition of gangliosides in cortical regions during aging, they were observed to follow region-specific alterations. In the frontal cortex, there was a greater decrease in GD1a and GM1 than in GT1b and GD1b, but in the occipital (visual) cortex there was no change in individual gangliosides. In hippocampus, GD1a moderately decreased, whereas other fractions were stable. In the cerebellar cortex, GD1b and GT1b fractions decreased with aging. In Alzheimer's disease, we found all ganglio-series gangliosides (GM1, GD1a, GD1b, GT1b) to be decreased in regions (temporal and frontal cortex and nucleus basalis of Meynert) involved in pathogenesis of disease. In addition, in Alzheimer's disease we found simple gangliosides (GN2, GM3) to be elevated in the frontal and parietal cortex, which might correlate accelerated lysosomal degradation of gangliosides and/or astrogliosis occurring during neuronal death.  相似文献   

7.
Gangliosides-sialylated glycosphingolipids-are the major glycoconjugates of nerve cells. The same four structures-GM1, GD1a, GD1b and GT1b-comprise the great majority of gangliosides in mammalian brains. They share a common tetrasaccharide core (Galβ1-3GalNAcβ1-4Galβ1-4Glcβ1-1'Cer) with one or two sialic acids on the internal galactose and zero (GM1 and GD1b) or one (GD1a and GT1b) α2-3-linked sialic acid on the terminal galactose. Whereas the genes responsible for the sialylation of the internal galactose are known, those responsible for terminal sialylation have not been established in vivo. We report that St3gal2 and St3gal3 are responsible for nearly all the terminal sialylation of brain gangliosides in the mouse. When brain ganglioside expression was analyzed in adult St3gal1-, St3gal2-, St3gal3- and St3gal4-null mice, only St3gal2-null mice differed significantly from wild type, expressing half the normal amount of GD1a and GT1b. St3gal1/2-double-null mice were no different than St3gal2-single-null mice; however, St3gal2/3-double-null mice were >95% depleted in gangliosides GD1a and GT1b. Total ganglioside expression (lipid-bound sialic acid) in the brains of St3gal2/3-double-null mice was equivalent to that in wild-type mice, whereas total protein sialylation was reduced by half. St3gal2/3-double-null mice were small, weak and short lived. They were half the weight of wild-type mice at weaning and displayed early hindlimb dysreflexia. We conclude that the St3gal2 and St3gal3 gene products (ST3Gal-II and ST3Gal-III sialyltransferases) are largely responsible for ganglioside terminal α2-3 sialylation in the brain, synthesizing the major brain gangliosides GD1a and GT1b.  相似文献   

8.
The distribution of cerebellar gangliosides was studied in staggerer (sg/sg) mutant mice, where the majority of granule cells die after completing their migration across the molecular layer. In addition, the external granule cell layer in sg/sg mice persists longer than in normal mice. Moreover, in the sg/sg cerebellum, Purkinje cells are significantly reduced in number, and almost none have tertiary branchlet spines. The loss of Purkinje cells and granule cells in sg/sg mice is accompanied by an early-onset reactive gliosis that continues through adulthood. By correlating changes in ganglioside composition with the well-documented histological events of cerebellar development in normal and sg/sg mice, we obtained strong evidence for a nonrandom cellular distribution of gangliosides. The sharpest reduction in the GD1a content of sg/sg cerebellum occurred after 15 days of age, coincident with granule cell loss. GT1a, on the other hand, was significantly reduced from 15 through 150 days in the sg/sg mice. GD3 is a major ganglioside of the undifferentiated granule cell, but it becomes rapidly displaced by the more complex gangliosides with the onset of granule cell maturation. In the sg/sg mice, GD3 persisted at abnormally high levels from 15 to 28 days and then accumulated through adulthood. These findings, and those from other cerebellar mouse mutants, suggest that GD1a is enriched in granule cells and that GT1a is enriched in Purkinje cells. Our findings also suggest that GT1a is more concentrated in branchlet spines than in other regions of the Purkinje cell membrane. GT1b appears to be enriched in both granule cells and Purkinje cells, whereas GM1 appears to be enriched in myelin. Furthermore, the apparent persistence of the embryonic ganglioside GD3 in sg/sg mice results from an early-onset reactive gliosis, together with a partial retardation in granule cell maturation. The accumulation of GD3 beyond 28 days reflects the continued accretion of GD3 in reactive glia.  相似文献   

9.
Roles for UDP-GlcNAc 2-epimerase/ManNAc 6-kinase (GNE) beyond controlling flux into the sialic acid biosynthetic pathway by converting UDP-GlcNAc to N-acetylmannosamine are described in this report. Overexpression of recombinant GNE in human embryonic kidney (HEK AD293) cells led to an increase in mRNA levels for ST3Gal5 (GM3 synthase) and ST8Sia1 (GD3 synthase) as well as the biosynthetic products of these sialyltransferases, the GM3 and GD3 gangliosides. Conversely, down-regulation of GNE by RNA interference methods had the opposite, but consistent, effect of lowering ST3Gal5 and ST8Sia1 mRNAs and reducing GM3 and GD3 levels. Control experiments ensured that GNE-mediated changes in sialyltransferase expression and ganglioside biosynthesis were not the result of altered flux through the sialic acid pathway. Interestingly, exogenous GM3 and GD3 also changed the expression of GNE and led to reduced ST3Gal5 and ST8Sia1 mRNA levels, demonstrating a reciprocating feedback mechanism where gangliosides regulate upstream biosynthetic enzymes. Cellular responses to the GNE-mediated changes in ST3Gal5 and ST8Sia1 expression and GM3 and GD3 levels were investigated next. Conditions that led to reduced ganglioside production (e.g. short hairpin RNA exposure) stimulated proliferation, whereas conditions that resulted in increased ganglioside levels (e.g. recombinant GNE and exogenous gangliosides) led to reduced proliferation with a concomitant increase in apoptosis. Finally, changes to BiP expression and ERK1/2 phosphorylation consistent with apoptosis and proliferation, respectively, were observed. These results provide examples of specific biochemical pathways, other than sialic acid metabolism, that are influenced by GNE.  相似文献   

10.
Four kinds of anti-GD3 monoclonal antibodies, DSG-1, -2, -3, and -4, of the IgM class were obtained by the immunization of BALB/c mice with enzootic bovine leukosis tumor tissue-derived ganglioside GD3 inserted into liposomes with Salmonella minnesota R595 lipopolysaccharides. The specificities of the monoclonal antibodies obtained were defined by complement-dependent liposome immune lysis assay and by enzyme immunostaining on thin-layer chromatography. The reactivities of the monoclonal antibodies obtained to four ganglioside GD3 variants [GD3(NeuAc-NeuAc), GD3(NeuAc-NeuGc), GD3(NeuGc-NeuAc), and GD3(NeuGc-NeuGc)] were tested. All of the monoclonal antibodies were found to react with GD3(NeuAc-NeuAc) and GD3(NeuAc-NeuGc) but not with GD3(NeuGc-NeuAc) or GD3(NeuGc-NeuGc). Furthermore, various purified glycosphingolipids were used to determine the specificity of these monoclonal antibodies. All 4 antibodies reacted only with ganglioside GD3 [GD3(NeuAc-NeuAc) and GD3(NeuAc-NeuGc)], but not with several gangliosides linking the GalNAc, Gal beta 1-3GalNAc, NeuAc alpha 2-3Gal beta 1-3GalNAc, or NeuAc alpha 2-8NeuAc alpha 2-3Gal beta 1-3GalNAc residue to the Gal moiety of ganglioside GD3 (GD2, GD1b, GT1b, or GQ1b, respectively), ganglioside GT1a having the same terminal NeuAc alpha 2-8NeuAc alpha 2-3Gal residue as ganglioside GD3, other gangliosides, and neutral glycosphingolipids. These findings suggest that the 4 monoclonal antibodies obtained may be specific for the epitope of NeuAc-alpha 2-8Sia alpha 2-3Gal beta 1-4Glc residue of ganglioside GD3.  相似文献   

11.
The thin-layer chromatographic (TLC) pattern of gangliosides of rat thymocytes showed a profile characterized by the occurrence of a predominant ganglioside which did not correspond to any reference gangliosides of rat brain. The ganglioside was isolated from rat thymus, and characterized by compositional analysis, methylation analysis, sialidase treatment, negative-ion fast atom bombardment (FAB) mass spectrometry, and proton NMR spectroscopy. The structure was elucidated to be NeuGc alpha 2-8NeuGc alpha 2-3Gal beta 1-3GalNac beta 1-4Gal beta 1-4Glc beta 1-1Cer. This is the major ganglioside of rat thymus lymphoid cells and is one of the GM1b-derived gangliosides, GD1c, having two N-glycolylneuraminic acids. This is the first report on the occurrence of GD1c in normal animal cells.  相似文献   

12.
Human anomalous killer (AK) cells lyse freshly isolated human melanoma cells which are insensitive to human natural killer cell-mediated lysis. Monoclonal antibody Leo Mel 3, an IgM (k), produced by a hybridoma obtained from a mouse immunized with human melanoma cells, binds to melanoma cells and inhibits their conjugate formation with AK cells as well as their AK cell-mediated lysis. Other IgM antibodies from the same fusion that bind melanoma cells do not inhibit (Werkmeister, J. A., Triglia, T., Andrews, P., and Burns, G. F. (1985) J. Immunol. 135, 689-695). Leo Mel 3 binds several different gangliosides from melanoma cells, as determined by immunostaining thin layer chromatograms. Binding is abolished by treatment of the gangliosides with neuraminidase. In solid-phase radioimmunoassay, Leo Mel 3 binds strongly to ganglioside GD2 and less strongly to gangliosides GT3, GD3, and GQ1b. It does not bind to other gangliosides including GM1, GM2, GM3, GD1a, GD1b, and GT1b. Thus, the epitope recognized by antibody Leo Mel 3 is found in the sugar sequence of ganglioside GD2, GalNAc beta 1-4[NeuAc alpha 2-8NeuAc alpha 2-3]Gal beta 1-4Glc beta 1 .... This sequence may contain a target in melanoma cells recognized by AK cells.  相似文献   

13.
The ganglioside patterns of cerebellum, cortex, pons-medulla, hypothalamus, hippocampus and caudate nucleus of three inbred strains of mice (C57BL/6J, DBA/2J and BALB/cJ) have been analysed. All brain areas contained both the simple and complex species of gangliosides. GD1a was the major ganglioside in cortex, hippocampus and caudate nucleus whereas GT1b was the major species in cerebellum, hypothalamus and pons-medulla. In hippocampus, the percentages of GT1b and GD1a were quite similar. Pons and medulla exhibited the highest levels of GM1 (which approaches the value of GT1b) and the lowest values of GD1a. A ganglioside, termed here GT1L, was located between GD1b and GT1b. This ganglioside, which was present in highest amounts in cerebellum disappeared after alkali treatment. Highly significant differences were observed in the amounts and patterns of gangliosides among brain areas of the three strains. Highly significant differences (p<0.001) were also found in the ganglioside distribution of various brain areas among the strains, especially for tri-and tetrasialogangliosides between Balb and DBA. A significant difference of GM1 was observed in the cerebellum when comparing DBA with the two other strains. It is likely that the differences might be related to their relative abundances in certain cell types and for defining synaptic circuits in brain areas of some strains.  相似文献   

14.
ON THE STRUCTURE OF TWO NEW GANGLIOSIDES FROM BEEF BRAIN   总被引:8,自引:4,他引:4  
Abstract— Two new gangliosides were isolated in pure form from beef brain. They were provisionally named ganglioside G5a and G5b. Ganglioside GSa is a monosialoganglioside containing fucose. Its basic neutral glycosphingolipid core is the gangliotetraose ceramide: Gal (1 —> 3) GalNac (1—> 4) Gal (1 —> 4) Glc (1—>) ceramide, most likely with β-linkages. Fucose is linked to the 2-position of external galactose, N -acetylneuraminic acid to the 3- position of internal galactose. Ganglioside G5b is a mixture of at least two isomeric disialogangliosides containing N -acetylneuraminic acid and N -glycolylneura-minic acid. The major isomer has the following structure: NeuNac (α,2—>3) Gal (β,1—>3) GalNac (β, 1 —> 4) (NeuNglα, 2 —> 3) gal (β,1—>4) Glc (β,1 —>)-ceramide. The minor isomer contains N -acetylneur-aminic acid and N -glycolylneuraminic acid in an inverted linkage position.  相似文献   

15.
The fine structural specificities of six monoclonal antibodies (MAbs) to ganglioside GD2, GalNAc beta 1----4(NeuAc alpha 2----8NeuAc alpha 2----3)Gal beta 1----4Glc-Cer, were studied. The binding specificities of these MAbs were found to differ from each other by virtue of their binding to structurally related authentic standard glycolipids as revealed by three different assay systems, including enzyme immunostaining on thin-layer chromatography, enzyme-linked immunosorbent assay, and immune adherence inhibition assay. The MAbs examined could be divided into three binding types. MAbs A1-201, A1-410, and A1-425 bound specifically to ganglioside GD2 and none of the other gangliosides tested. Two other MAbs (A1-245 and A1-267) reacted not only with GD2, but also with several other gangliosides having the sequence NeuAc alpha 2----8NeuAc alpha 2----3Gal (GD3, GD1b, GT1a, GT1b, and GQ1b). The reactivities with these gangliosides varied to some degree. In addition, these MAbs were found to react with both GD3(NeuAc-NeuAc) and GD3(NeuGc-NeuAc), but not with GD3(NeuAc-NeuGc) or GD3(NeuGc-NeuGc). The last MAb (A1-287) also reacted with several other gangliosides but with lower avidity than A1-245 and A1-267. These findings suggest that each MAb to ganglioside GD2 may have an individual binding specificity and avidity. These MAbs represent potentially useful reagents for analyzing the function of GD2 on cell surface membranes, and provide a system for precisely studying the interactions between an anti-ganglioside antibody and the binding epitope of the antigenic determinant.  相似文献   

16.
Developmental profiles of gangliosides in trisomy 19 mice   总被引:1,自引:0,他引:1  
The ganglioside composition of the cerebrum, cerebellum, brainstem, liver, heart, and spleen was analyzed quantitatively in trisomy 19 (Ts19) mice aged 4 to 12 days postpartum. The developmental profiles of cerebral gangliosides were similar in Ts19 mice and control littermates: Total ganglioside-sialic acid as well as the proportions of the individual gangliosides GD1a and GM1 increased with age, while the percentages of GQ1b and GT1b decreased during development. Both the accretion of the total ganglioside content and the development of the individual ganglioside fractions were delayed by 2-3 days in the Ts19 telencephalon. Likewise, the shift from the b- to the a-pathway of ganglioside synthesis was retarded. Ganglioside development was equally delayed in the cerebellum and the brainstem of Ts19 mice. Since in Ts19 mice, morphogenesis of several brain regions is similarly delayed by 2 days, these results confirm the usefulness of gangliosides as biochemical markers for brain maturation. In contrast to brain gangliosides, the ganglioside composition of the Ts19 livers was clearly distinguished from that of control livers. Total ganglioside-bound sialic acid was increased by 35-50% in Ts19 livers. This elevation in ganglioside content not explicable by a simple delay in development was mainly due to an increase in GD3 and fraction 2, which is likely to contain GD1a and GD1b. In contrast, GM2 which increased considerably with age in control mice persisted on a low level in Ts19 livers. Comparable alterations of the ganglioside pattern were neither observed in the spleen nor in the heart of Ts19 mice. The data presented give additional evidence that ganglioside synthesis in the liver is under a different regulation mechanism than that in the brain, heart, and spleen.  相似文献   

17.
Summary The developmental accretion of up to nine individual gangliosides in foetal brains, peri- and postnatal cortices, postnatal cerebelli and olfactory lobes and in the liver and the spleen were investigated in mice and compared with that of glycoprotein-bound sialic acid and the activity of the acetylcholinesterase.In foetal brain and in postnatal liver and spleen more sialic acid was found bound to glycoproteins than to gangliosides. In postnatal brain structures, however, ganglioside-NeuAc predominated and increased between the 7th and 21st d about 2-fold in the olfactory lobes and cerebellum and more than 3-fold in the cortex.During foetal development the relative quantities (mol %) as well as the absolute concentrations (compared with the fresh weight) of GM1, GM2 and GM3 in the brain decreased, whereas those of GD1a, GD1b and GQ increased.This pattern change continued perinatally in the cortex up to the end of the first week. Thereafter the pattern changed little, but the concentration of all gangliosides present increased much more rapidly, especially between the 10th and 13th d.The postnatal cerebellum and olfactory lobes contained higher concentrations of GM1 and GM3 than the cortex, both gangliosides decreasing in favour of their di-, tri- and tetrasialo-homologues during the third postnatal week.In all brains structures the accretion of GD1a and GT1 was proportional to the increase in the activity of the acetylcholinesterase.Unlike the brain structures, the ganglioside pattern in the liver and spleen, characterised by a predominance of monosialogangliosides and of GD3, did not change noticeably during the first three weeks after birth.The coincidence of the changes in ganglioside accretion observed in the different brain structures with successive periods of morphological differentiation further support the suggestion that gangliosides may play an important role in control of the growth and differentiation of developing nerve cells.Abbreviations GM3 II3NeuAc-GgOse2Cer - GM2 II3NeuAc-GgOse3Cer - GM1 II3NeuAcGgOse4Cer - GD1a IV3NeuAc-, II3 NeuAc-GgOse4Cer - GD3 II3 NeuAc2-GgOse2Cer - GD2 II3 NeuAc2-GgOse3 Cer - GD1b II3 NeuAc2-GgOse4 Cer - GT1 IV3 NeuAc-, II3 NeuAc2-GgOse4 Cer - GQ IV3 NeuAc-, II3 NeuAc3-GgOse4 Cer - NeuAc N-acetylneuraminic acid (sialic acid) - AChE Acetylcholinesterase  相似文献   

18.
In this study, brain gangliosides in prenatal and postnatal human life were analyzed. Immunohistochemically, the presence of "c"-pathway of gangliosides (GQ1c) in embryonic brain was only recorded at 5 weeks of gestation. Biochemical results indicated a twofold increase in human cortex ganglioside concentration between 16 and 22 weeks of gestation. The increasing ganglioside concentration was based on an increasing GD1a ganglioside fraction in all regions analyzed except cerebellar cortex, which was characterized by increasing GT1b. In this developmental period, GD3 was found to be localized in the ventricular zone of the cortical wall. After birth, GD1b ganglioside in neuropil of granular cell layer corresponding to growing mossy fibers was expressed in cerebellar cortex. Between birth and 20/30 years of age, a cerebral neocortical difference of ganglioside composition was observed, characterized by lowest GD1a in visual cortex. Analyzing the composition of gangliosides in cortical regions during aging, they were observed to follow region-specific alterations. In frontal cortex, there was a greater decrease in GD1a and GM1 than in GT1b and GD1b, but in occipital (visual) cortex there was no change in individual gangliosides. In hippocampus, GD1a moderately decreased, whereas other fractions were stable. In cerebellar cortex, GD1b and GT1b fractions decreased with aging.  相似文献   

19.
Topographical Atlas of the Gangliosides of the Adult Human Brain   总被引:2,自引:1,他引:2  
Forty different brain samples, consisting of neocortical, archicortical, and paleocortical areas; telencephalic, diencephalic, and mesencephalic subcortical nuclei; and the cerebellum as well as some of the corresponding white matter bundles were analyzed with respect to total content of ganglioside-sialic acid and the ganglioside pattern. The total content of gangliosides seems to depend mainly on the proportions of gray and white matter. Thus, neocortical areas, which are rich in gray matter, have a four- to fivefold higher ganglioside content (per milligram of protein) than white matter-rich samples such as optic chiasm, capsula interna, or corpus callosum. White matter-rich regions, although very heterogeneous in ganglioside composition, are further characterized by appreciable amounts of the myelin-enriched GM4. In the neocortex a remarkable degree of regional pattern differences was revealed. In the frontal and parietal areas there is a moderate, and in the temporal region a strong preponderance of sialic acid bound to gangliosides of the a-pathway (GD1a, GM1). In contrast, the occipital cortex favors the b-pathway of ganglioside synthesis (GQ1b, GT1b, GD1b). A predominance of "b-gangliosides" was found in all structures that are related to the visual system (optic chiasm, pulvinar-thalamus, superior colliculi, visual cortex) as well as in the cerebellum and the nucleus ruber. All diencephalic nuclei tend to favor slightly "b-gangliosides," while the mesencephalic nuclei are very heterogeneous in their ganglioside composition. A preponderance of "a-gangliosides" was found in the periamygdalar cortex, putamen, inferior colliculi, substantia nigra, frontal white matter, internal capsule, globus pallidus, basal nucleus of Meynert, and corpus callosum as well as in the frontal, parietal, and temporal cortices. An exceptional predominance of GM1 and GD1a was revealed for the hippocampal archicortex and the amygdala, suggesting a possible functional correlation to glutaminergic synaptic transmission.  相似文献   

20.
The developmental profiles of the four major brain gangliosides, GM1, GD1a, GD1b, and GT1b, were examined in human frontal lobe covering the period from 10 fetal weeks to 80 years of age. The ganglioside concentration increased approx. 3-fold from the 10th gestational week to the age of about 5 years. Gangliosides GM1 and GD1a increased 12-15-fold during the same period. The most rapid increase of GM1 and GD1a occurred around term, during the period for dendrite arborization, outgrowth of axons and synaptogenesis. GT1b showed a quite different developmental curve. It was the major ganglioside during the 3rd to 5th gestational month, whereafter its concentration dropped rapidly to term, from which time the concentration then increased up to 50 years of age. Similar curves were found for the other gangliosides of the b-series, GD3, GD2, GD1b and GQ1b. Ganglioside 3'-isoLM1 was a characteristic early fetal ganglioside which dropped rapidly to the 5th gestational month, reached a small peak around term and then disappeared during adulthood. The concentration of gangliosides of the neolacto series was larger than that of the lacto series during the whole developmental period. In the beginning of the second trimester, 3'-LM1 constituted 2% and LD1 10% of total ganglioside sialic acid. The new findings demonstrate more dynamic changes of the ganglioside patterns during development than noted in previous studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号