首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Interest in creatine (Cr) as a nutritional supplement and ergogenic aid for athletes has surged over recent years. After cellular uptake, Cr is phosphorylated to phosphocreatine (PCr) by the creatine kinase (CK) reaction using ATP. At subcellular sites with high energy requirements, e.g. at the myofibrillar apparatus during muscle contraction, CK catalyzes the transphosphorylation of PCr to ADP to regenerate ATP, thus preventing a depletion of ATP levels. PCr is thus available as an immediate energy source, serving not only as an energy buffer but also as an energy transport vehicle. Ingestion of creatine increases intramuscular Cr, as well as PCr concentrations, and leads to exercise enhancement, especially in sprint performance. Additional benefits of Cr supplementation have also been noticed for high-intensity long-endurance tasks, e.g. shortening of recovery periods after physical exercise.The present article summarizes recent findings on the influence of Cr supplementation on energy metabolism, and introduces the Cr transporter protein (CreaT), responsible for uptake of Cr into cells, as one of the key-players for the multi-faceted regulation of cellular Cr homeostasis. Furthermore, it is suggested that patients with disturbances in Cr metabolism or with different neuro-muscular diseases may benefit from Cr supplementation as an adjuvant therapy to relieve or delay the onset of symptoms. Although it is still unclear how Cr biosynthesis and transport are regulated in health and disease, so far there are no reports of harmful side effects of Cr loading in humans. However, in this study, we report that chronic Cr supplementation in rats down-regulates in vivo the expression of the CreaT. In addition, we describe the presence of CreaT isoforms most likely generated by alternative splicing.  相似文献   

2.
The objective of this study was to determine the effect of creatine supplementation on performance and body composition of swimmers. Eighteen swimmers were evaluated in terms of post-performance lactate accumulation, body composition, creatine and creatinine excretion, and serum creatinine concentrations before and after creatine or placebo supplementation. No significant differences were observed in the marks obtained in swimming tests after supplementation, although lactate concentrations were higher in placebo group during this period. In the creatine-supplemented group, urinary creatine, creatinine, and body mass, lean mass and body water were significantly increased, but no significant difference in muscle or bone mass was observed. These results suggest that creatine supplementation cannot be considered to be an ergogenic supplement ensuring improved performance and muscle mass gain in swimmers.  相似文献   

3.
Rawson ES  Venezia AC 《Amino acids》2011,40(5):1349-1362
The ingestion of the dietary supplement creatine (about 20 g/day for 5 days or about 2 g/day for 30 days) results in increased skeletal muscle creatine and phosphocreatine. Subsequently, the performance of high-intensity exercise tasks, which rely heavily on the creatine-phosphocreatine energy system, is enhanced. The well documented benefits of creatine supplementation in young adults, including increased lean body mass, increased strength, and enhanced fatigue resistance are particularly important to older adults. With aging and reduced physical activity, there are decreases in muscle creatine, muscle mass, bone density, and strength. However, there is evidence that creatine ingestion may reverse these changes, and subsequently improve activities of daily living. Several groups have demonstrated that in older adults, short-term high-dose creatine supplementation, independent of exercise training, increases body mass, enhances fatigue resistance, increases muscle strength, and improves the performance of activities of daily living. Similarly, in older adults, concurrent creatine supplementation and resistance training increase lean body mass, enhance fatigue resistance, increase muscle strength, and improve performance of activities of daily living to a greater extent than resistance training alone. Additionally, creatine supplementation plus resistance training results in a greater increase in bone mineral density than resistance training alone. Higher brain creatine is associated with improved neuropsychological performance, and recently, creatine supplementation has been shown to increase brain creatine and phosphocreatine. Subsequent studies have demonstrated that cognitive processing, that is either experimentally (following sleep deprivation) or naturally (due to aging) impaired, can be improved with creatine supplementation. Creatine is an inexpensive and safe dietary supplement that has both peripheral and central effects. The benefits afforded to older adults through creatine ingestion are substantial, can improve quality of life, and ultimately may reduce the disease burden associated with sarcopenia and cognitive dysfunction.  相似文献   

4.
Creatine (Cr) plays a central role in energy provision through a reaction catalyzed by phosphorylcreatine kinase. Furthermore, this amine enhances both gene expression and satellite cell activation involved in hypertrophic response. Recent findings have indicated that Cr supplementation has a therapeutic role in several diseases characterized by atrophic conditions, weakness, and metabolic disturbances (i.e., in the muscle, bone, lung, and brain). Accordingly, there has been an evidence indicating that Cr supplementation is capable of attenuating the degenerative state in some muscle disorders (i.e., Duchenne and inflammatory myopathies), central nervous diseases (i.e., Parkinson’s, Huntington’s, and Alzheimer’s), and bone and metabolic disturbances (i.e., osteoporosis and type II diabetes). In light of this, Cr supplementation could be used as a therapeutic tool for the elderly. The aim of this review is to summarize the main studies conducted in this field and to highlight the scientific and clinical perspectives of this promising therapeutic supplement.  相似文献   

5.
ABSTRACT: BACKGROUND: SLC6A8, an X-linked gene, encodes the creatine transporter (CRTR) and its mutations lead to cerebral creatine (Cr) deficiency which results in mental retardation, speech and language delay, autistic-like behaviour and epilepsy (CRTR-D, OMIM 300352). CRTR-D represents the most frequent Cr metabolism disorder but, differently from Cr synthesis defects, that are partially reversible by oral Cr supplementation, does not respond to Cr treatment even if precociously administrated. The precursors of Cr are the non-essential amino acids Glycine (Gly) and Arginine (Arg), which have their own transporters at the brain-blood barrier level and, therefore, their supplementation appears an attractive and feasible therapeutic option aimed at stimulating Cr endogenous synthesis and, in this way, at overcoming the block of Cr transport within the brain. However, until now the effects of Arg and/or Gly supplementation on Cr brain levels and behaviour have been controversial. METHODS: In this study five Italian male patients affected by CRTR-D were supplemented with oral LArg at a dosage of 300 mg/kg/day divided into 3 doses, for 24-36 months. Biochemical and plasmatic amino acids examinations and thyroid hormone dosages were periodically performed. Moreover, Proton and Phosphorus Magnetic Resonance Spectroscopy (MRS) was monitored during follow-up in concurrence with neuropsychological evaluations. RESULTS: During L-Arg treatment a clinical improvement in motor skills and to a lesser extent in communication and attention was observed. In addition, all patients had a reduction in the number and frequency of epileptic seizures. Daily living skills appeared also to be positively influenced by L-Arg treatment. Moreover, Total Cr and especially PhosphoCr, evaluated byproton and phosphorus spectroscopy, showed a mild increase, although well below the normal range. CONCLUSION: This study provides information to support the effectiveness of L-Arg supplement treatment in CTRT-D patients; in fact the syndromic pattern of cognitive and linguistic deficit presented by CRTR-D patients was partially altered by L-Arg supplementation especially at a qualitative clinical level. Oral L-Arg may represent not only a protective factor towards a further cognitive decline, but can lead to the acquisition of new skills.  相似文献   

6.
There has been considerable interest in the use of creatine (Cr) supplementation to treat neurological disorders. However, in contrast to muscle physiology, there are relatively few studies of creatine supplementation in the brain. In this report, we use high-field MR (31)P and (1)H spectroscopic imaging of human brain with a 7-day protocol of oral Cr supplementation to examine its effects on cerebral energetics (phosphocreatine, PCr; ATP) and mitochondrial metabolism (N-acetyl aspartate, NAA; and Cr). We find an increased ratio of PCr/ATP (day 0, 0.80 +/- 0.10; day 7, 0.85 +/- 09), with this change largely due to decreased ATP, from 2.7 +/- 0.3 mM to 2.5 +/- 0.3 mM. The ratio of NAA/Cr also decreased (day 0, 1.32 +/- 0.17; day 7 1.18 +/- 0.13), primarily from increased Cr (9.6 +/- 1.9 to 10.1 +/- 2.0 mM). The Cr-induced changes significantly correlated with the basal state, with the fractional increase in PCr/ATP negatively correlating with the basal PCr/ATP value (R = -0.74, P < 0.001). As NAA is a measure of mitochondrial function, there was also a significant negative correlation between basal NAA concentrations with the fractional change in PCr and ATP. Thus healthy human brain energetics is malleable and shifts with 7 days of Cr supplementation, with the regions of initially low PCr showing the largest increments in PCr. Overall, Cr supplementation appears to improve high-energy phosphate turnover in healthy brain and can result in either a decrease or an increase in high-energy phosphate concentrations.  相似文献   

7.
To examine the efficacy of a low-dose, short-duration creatine monohydrate supplement, 40 physically active men were randomly assigned to either a placebo or creatine supplementation group (6 g of creatine monohydrate per day). Testing occurred before and at the end of 6 days of supplementation. During each testing session, subjects performed three 15-second Wingate anaerobic power tests. No significant (p > 0.05) group or time differences were observed in body mass, peak power, mean power, or total work. In addition, no significant (p > 0.05) differences were observed in peak power, mean power, or total work. However, the change in the rate of fatigue of total work was significantly (p < 0.05) lower in the creatine supplementation group than in the placebo group, indicating a reduced fatigue rate in subjects supplementing with creatine compared with the placebo. Although the results of this study demonstrated reduced fatigue rates in patients during high-intensity sprint intervals, further research is necessary in examining the efficacy of low-dose, short-term creatine supplementation.  相似文献   

8.
Klopstock T  Elstner M  Bender A 《Amino acids》2011,40(5):1297-1303
The supplementation of creatine has shown a marked neuroprotective effect in mouse models of neurodegenerative diseases (Parkinson’s disease, Huntington’s disease, amyotrophic lateral sclerosis). This has been assigned to the known bioenergetic, anti-apoptotic, anti-excitotoxic and anti-oxidant properties of creatine. As aging and neurodegeneration share pathophysiological pathways, we investigated the effect of oral creatine supplementation on aging in 162 aged wild-type C57Bl/6J mice. The median healthy life span of creatine-fed mice was 9% higher than in their control littermates, and they performed significantly better in neurobehavioral tests. In brains of creatine-treated mice, there was a trend toward a reduction of reactive oxygen species and significantly lower accumulation of the “aging pigment” lipofuscin. Expression profiling showed an upregulation of genes implicated in neuronal growth, neuroprotection, and learning. These data showed that creatine improves health and longevity in mice. Creatine may, therefore, be a promising food supplement to promote healthy human aging. However, the strong neuroprotective effects in animal studies of creatine have not been reproduced in human clinical trials (that have been conducted in Parkinson’s disease, Huntington’s disease, and amyotrophic lateral sclerosis). The reasons for this translational gap are discussed. One obvious cause seems to be that all previous human studies may have been underpowered. Large phase III trials over long time periods are currently being conducted for Parkinson’s disease and Huntington’s disease, and will possibly solve this issue.  相似文献   

9.
Creatine is a nutritional supplement with major application as ergogenic and neuroprotective substrate. Varying supplementation protocols differing in dosage and duration have been applied but systematic studies of total creatine (creatine and phosphocreatine) content in the various organs of interest are lacking. We investigated changes of total creatine concentrations in brain, muscle, heart, kidney, liver, lung and venous/portal plasma of guinea pigs, mice and rats in response to 2-8 weeks oral creatine-monohydrate supplementation (1.3-2 g/kg/d; 1.4-2.8% of dietary intake). Analysis of creatine and phosphocreatine content was performed by high performance liquid chromatography. Total creatine was determined as the sum of creatine and phosphocreatine. Presupplementation total creatine concentrations were high in brain, skeletal and heart muscle (10-22 micromol/g wet weight), and low in liver, kidney and lung (5-8 micromol/g wet weight). During creatine supplementation, the relative increase of total creatine was low (15-55% of presupplementation values) in organs with high presupplementation concentrations, and high (260-500% of presupplementation values) in organs with low presupplementation concentrations. The increase of total creatine concentrations was most pronounced after 4 weeks of supplementation. In muscle, brain, kidney and lungs, an additional increase (p<0.01) was observed between 2-4 and 2-8 weeks of supplementation. Absolute concentrations of phosphocreatine increased, but there was no increase of the relative (percentual) proportion of phosphocreatine (14-45%) during supplementation. Statistical comparison of total creatine concentrations across the species revealed no systematically differences in organ distribution and in time points of supplementation. Results suggest that in organs with low presupplementation creatine levels (liver, kidney), a major determinant of creatine uptake is an extra-intracellular concentration gradient. In organs with high presupplementation total creatine levels like brain, skeletal and heart muscle, the maximum capacity of creatine accumulation is low compared to other organs. A supplementation period of 2 to 4 weeks is necessary for significant augmentation of the creatine pool in these organs.  相似文献   

10.
Creatine is an ergogenic aid used in individual and team sports. The aim of this study is to analyze the effect of monohydrate creatine supplementation on physical performance during 6 consecutive maximal speed 60 meter races, and the changes induced in some characteristic biochemical and ventilatory parameters. The study was carried out on nineteen healthy and physically active male volunteers, and randomly distributed into two groups: Group C received a supplement of creatine monohydrate (20 g/day for 5 days) and group P received placebo. Tests were performed before and after supplementation. No significant changes were observed in weight or body water measured by bioimpedance or the sum of 7 skinfold or performance during the 60 meter races. Group C showed a statistically significant increase in plasma creatinine from 69.8 +/- 12.4 to 89.3 +/- 12.4 micromol x L(-1) (p<0.05). In group C in the second control day (after creatine supplementation), expiratory volume V(E), O2 uptake and CO2 production were lower after 2 minutes of active recovery period. These results indicate that creatine monohydrate supplementation does not appear to improve the performance in 6 consecutive 60 meter repeated races but may modify ventilatory dynamics during the recovery after maximal effort.  相似文献   

11.
The creatine kinase/phosphocreatine system plays a key role in cell energy buffering and transport, particularly in cells with high or fluctuating energy requirements, like neurons, i.e. it participates in the energetic metabolism of the brain. Creatine depletion causes several nervous system diseases, alleviated by phosphagen supplementation. Often, the supplementation contains both creatine and creatine ethyl ester, known to improve the effect of creatine through an unknown mechanism. In this work we showed that purified creatine kinase is able to phosphorilate the creatine ethyl ester. The K(m) and V(max) values, as well as temperature and pH optima were determined. Conversion of the creatine ethyl ester into its phosphorylated derivative, sheds light on the role of the creatine ethyl ester as an energy source in supplementation for selected individuals.  相似文献   

12.
The purpose of this study was to determine the effects creatine (Cr) loading may have on thermoregulatory responses during intermittent sprint exercise in a hot/humid environment. Ten physically active, heat-acclimatized men performed 2 familiarization sessions of an exercise test consisting of a 30-minute low-intensity warm-up followed by 6 x 10 second maximal sprints on a cycle ergometer in the heat (35 degrees C, 60% relative humidity). Subjects then participated in 2 different weeks of supplementation. The first week, subjects ingested 5 g of a placebo (P, maltodextrin) in 4 flavored drinks (20 g total) per day for 6 days and were retested on day 7. The second week was similar to the first except a similar dose (4 x 5 g/day) of creatine monohydrate (Cr) replaced maltodextrin in the flavored drinks. Six days of Cr supplementation produced a significant increase in body weight (+1.30 +/- 0.63 kg), whereas the P did not (+0.11 +/- 0.52 kg). Compared to preexercise measures, the exercise test in the heat produced a significant increase in core temperature, a loss of body water determined by body weight change during exercise, and a relative change in plasma volume (%PVC); however, these were not significantly different between P and Cr. Sprint performance was enhanced by Cr loading. Peak power and mean power were significantly higher during the intermittent sprint exercise test following 6 days of Cr supplementation. It appears that ingestion of Cr for 6 days does not produce any different thermoregulatory responses to intermittent sprint exercise and may augment sprint exercise performance in the heat.  相似文献   

13.
Anecdotal reports suggesting that creatine (Cr) supplementation may cause side effects, such as an increased incidence of muscle strains or tears, require scientific examination. In this study, it was hypothesized that the rapid fluid retention and "dry matter growth" evident after Cr supplementation may cause an increase in musculotendinous stiffness. Intuitively, an increase in musculotendinous stiffness would increase the chance of injury during exercise. Twenty men were randomly allocated to a control or an experimental group and were examined for musculotendinous stiffness of the triceps surae and for numerous performance indices before and after Cr ingestion. The Cr group achieved a significant increase in body mass (79.7 +/- 10.8 kg vs. 80.9 +/- 10.7 kg), counter movement jump height (40.2 +/- 4.8 cm vs. 42.7 +/- 5.9 cm), and 20-cm drop jump height (32.3 +/- 3.3 cm vs. 35.1 +/- 4.8 cm) after supplementation. No increase was found for musculotendinous stiffness at any assessment load. There were no significant changes in any variables within the control group. These findings have both performance- and injury-related implications. Primarily, anecdotal evidence suggesting that Cr supplementation causes muscular strain injuries is not supported by this study. In addition, the increase in jump performance is indicative of performance enhancement in activities requiring maximal power output.  相似文献   

14.
In this investigation we evaluated the effects of oral creatine (Cr) supplementation on body composition, strength of the elbow flexors, and fatigue of the knee extensors in 20 males aged 60-82 years who were randomly administered Cr or placebo (P) in a double-blind fashion. Subjects ingested either 20 g of Cr or P for 10 days, followed by either 4 g of Cr or P, respectively, for 20 days. Tests were conducted pre-supplementation and following 10 and 30 days of supplementation. Leg fatigue was determined using an isokinetic dynamometer; subjects performed 5 sets of 30 maximal voluntary contractions at 180 degrees x s(-1), with 1 min of recovery between sets. The strength of the elbow flexors was assessed using a modified preacher bench attached to a strain gauge. There was a significant interaction (P < 0.05; group x time) in leg fatigue following supplementation. However, this interaction appears to have resulted from a combination of the improved fatigue score by the Cr-supplemented group and the decreased fatigue score by the P-supplemented group, because when the simple main effects were analyzed for the groups individually, there was no significant difference over time for either of the groups. There were no significant differences in body mass, body density, or fat-free mass as assessed by hydrostatic weighing, or strength between the Cr-supplemented or P-supplemented groups. These data suggest that 30 days of Cr-supplementation may have a beneficial effect on reducing muscle fatigue in men over the age of 60 years, but it does not affect body composition or strength.  相似文献   

15.
Direct antioxidant properties of creatine.   总被引:1,自引:0,他引:1  
Creatine is the most popular supplement proposed to be an ergogenic aid. There is some evidence in the literature that creatine supplementation increases lean body mass, muscular strength, and sprint power. However, the efficacy of creatine has not been consistent, and the potential mechanisms are unresolved. While limited evidence that suggests that creatine could possess an antioxidant effect this has not been tested directly. Because oxidants such as free radicals can affect muscle fatigue and protein turnover, it is important to know whether creatine can neutralize free radicals and other reactive oxygen species. We tested the hypothesis that creatine would remove superoxide anions (O(*-)(2)), peroxynitrite (OONO-), hydrogen peroxide, and lipid peroxides (t-butyl hydroperoxide). We also determined whether creatine displayed a significant antioxidant scavenging capacity (ASC) using 2,2'-azino-bis(3-ethylbenzothiazolamine-6-sulfonic acid) (ABTS+) quenching as a marker. Creatine did not significantly reduce levels of hydrogen peroxide or lipid peroxidation. In contrast, creatine displayed a significant ability to remove ABTS+, O(*-)(2), and OONO- when compared with controls. Creatine quenching of ABTS+ was less than physiological levels of reduced glutathione (0.375 mM). To our knowledge, this is the first evidence that creatine has the potential to act as a direct antioxidant against aqueous radical and reactive species ions.  相似文献   

16.
The creatine kinase/phosphocreatine system plays a key role in cell energy buffering and transport, particularly in cells with high or fluctuating energy requirements, like neurons, i.e. it participates in the energetic metabolism of the brain. Creatine depletion causes several nervous system diseases, alleviated by phosphagen supplementation. Often, the supplementation contains both creatine and creatine ethyl ester, known to improve the effect of creatine through an unknown mechanism. In this work we showed that purified creatine kinase is able to phosphorilate the creatine ethyl ester. The K m and V max values, as well as temperature and pH optima were determined. Conversion of the creatine ethyl ester into its phosphorylated derivative, sheds light on the role of the creatine ethyl ester as an energy source in supplementation for selected individuals.  相似文献   

17.
Creatine supplementation has been found to significantly increase muscle strength and hypertrophy in young adults (≤ 35 yr) particularly when consumed in conjunction with a resistance training regime. Literature examining the efficacy of creatine supplementation in older adults (55-82 yr) suggests creatine to promote muscle strength and hypertrophy to a greater extent than resistance training alone. The following is a review of literature reporting on the effects of creatine supplementation on intramuscular high energy phosphates, skeletal muscle morphology and quality of life in older adults. Results suggest creatine supplementation to be a safe, inexpensive and effective nutritional intervention, particularly when consumed in conjunction with a resistance training regime, for slowing the rate of muscle wasting that is associated with aging. Physicians should strongly consider advising older adults to supplement with creatine and to begin a resistance training regime in an effort to enhance skeletal muscle strength and hypertrophy, resulting in enhanced quality of life.  相似文献   

18.
Creatine (Cr) supplementation has yielded inconsistent results when applied to competitive swimming. To further define the role of Cr, we tested the hypothesis that a Cr supplementation group of Division III swimmers would demonstrate enhanced performance when compared with placebo. In order to test this hypothesis, 8 male and 7 female collegiate Division III swimmers were assigned in a random, double-blind manner into either a Cr supplementation group (0.3 g Cr.kg(-1) body mass) or a placebo group. Loading was maintained for 5 days followed by a 9-day period where Cr-supplemented subjects consumed 2.25 g Cr regardless of body weight. A 50- and 100-yd sprint was performed prior to and following the supplementation regimens. The Cr supplementation group decreased their finish times in both the 50- and 100-yd sprints. Support of the hypothesis suggests that Cr supplementation for swimming events is effective for singular effort sprints of 50 and 100 yd in Division III athletes.  相似文献   

19.
Dietary creatine (Cr) supplementation has been shown to enhance muscular strength and endurance. This study determined the effects of Cr supplementation on performance of military training tasks. Two groups (Cr and placebo [Pl]) of 13 male soldiers each performed 3 consecutive military obstacle course runs ( approximately 3 minutes over 7 obstacles with a 2-minute rest between runs) followed by a rifle marksmanship task on 3 occasions (T(1), T(2), and T(3)), each separated by 5 days. They also completed a bench press protocol (5 sets to failure at 70% of 1 repetition maximum) and answered the Profile of Mood States questionnaire during each test session. Testing was done 3 times. No supplementation was given before T(1). Supplementation was provided using sports bars, with both groups receiving Pl bars between T(1) and T(2), whereas from T(2) to T(3) the Cr group consumed 24 g per day of Cr monohydrate in sports bars and the Pl group consumed an equal amount (kilocalories) of Pl sports bars. Creatine usage resulted in a significant (14%) increase in total bench press repetitions (p 相似文献   

20.
Creatine (Cr) is an important high-energy phosphate buffer in tissues with a high energy demand such as muscle and brain and is consequently a highly consumed nutritional supplement. Creatine is synthesized via the S-adenosylmethionine (SAM) dependent methylation of guanidinoacetate (GAA) which is not regulated by a feedback mechanism. The first objective of this study was to determine the effectiveness of GAA at increasing tissue Cr stores. Because SAM is required for other methylation reactions, we also wanted to determine whether an increased creatine synthesis would lead to a lower availability of methyl groups for other methylated products. Three month-old pigs (n = 18) were fed control, GAA- or Cr-supplemented diets twice daily. On day 18 or 19, anesthesia was induced 1–3 hours post feeding and a bolus of [methyl-3H]methionine was intravenously infused. After 30 minutes, the liver was analyzed for methyl-3H incorporation into protein, Cr, phosphatidylcholine (PC) and DNA. Although both Cr and GAA led to higher hepatic Cr concentration, only supplementation with GAA led to higher levels of muscle Cr (P < 0.05). Only GAA supplementation resulted in lower methyl-3H incorporation into PC and protein as well as lower hepatic SAM concentration compared to the controls, suggesting that Cr synthesis resulted in a limited methyl supply for PC and protein synthesis (P < 0.05). Although GAA is more effective than Cr at supporting muscle Cr accretion, further research should be conducted into the long term consequences of a limited methyl supply and its effects on protein and PC homeostasis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号