首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Klebsiella aerogenes adapted to a chemically-defined mineral salts medium with glucose orp-hydroxybenzoate as sole source of carbon and energy possessed constitutive decarboxylases for gentisate (2,5-dihydroxybenzoate), protocatechuate (3,4-dihydroxybenzoate) and gallate (3,4,5-trihydroxybenzoate) whose pH optima were respectively 5.9, 5.6 and 5.8. A decarboxylase for PHB was induced by PHB in both growing and resting cells; the induction was delayed or inhibited by chloramphenicol and by ultrasonic disruption of the bacteria. Crude ultrasonic preparations of PHB decarboxylase had an optimum pH of 6.0, a Michaelis constant of 4mm and an activation energy of 25,500 cal mole–1 at 28 – 38 C. All four decarboxylations proceeded without O2 and for every mole of phenolic acid decomposed one mole of CO2 and one mole of the corresponding phenol were produced. The effects of ultrasonic disruption of the bacteria suggested that permeability barriers limited the rate of decarboxylation of PHB and 2,5-DHB but not of 3,4-DHB or 3,4,5-THB. During ultrasonic disintegration PHB and 3,4-DHB decarboxylases were retained solely by insoluble centrifugeable particles, whereas 2,5-DHB and 3,4,5-THB decarboxylases were gradually released into solution.The decarboxylation of protocatechuic acid is an essential stage in the assimilation ofp-hydroxybenzoic acid byK. aerogenes, whereas the decarboxylation ofp-hydroxybenzoate itself is an injurious side reaction.We wish to thank Mr. P. J. Wragg for technical assistance.  相似文献   

2.
Klebsiella aerogenes NCTC 418 adapted to mineral salts medium with benzoate as sole source of carbon and energy oxidized catechol without a lag and as rapidly as benzoate. It also oxidizedcis-cis-muconate, (+)-muconolactone and -ketoadipate without a lag but less rapidly. For each mol of benzoate, catechol,cis-cis-muconate, (+)-muconolactone or -ketoadipate oxidized by fresh, intact benzoate-adapted bacteria, 6.0, 5.0, 4.0, 4.0 and 4.0 mol of O2 respectively were taken up. Incubation of cell-free extracts of ultrasonically disrupted benzoateadapted bacteria with catechol in the presence of EDTA affordedcis-cis-muconate. Incubation of heat-treated cell-free extracts withcis-cis-muconate yielded (+)-muconolactone. Incubation of cell-free extracts with catechol,cis-cis-muconate, or (+)-muconolactone gave -ketoadipate. Cell-free extracts of the organism adapted to mineral salts medium containingp-hydroxybenzoate as sole source of carbon and energy also converted catechol to -ketoadipate. Strains adapted to glucose, benzoate orp-hydroxybenzoate did not contain detectable amounts of catechol-2,3-oxygenase. The above observations are consistent with the following pathway inK. aerogenes: benzoate (orp-hydroxybenzoate) catecholcis-cis-muconate(+)-muconolactone-ketoadipate.The author wishes to thank Professor M. W. Partridge for chemical advice, and Miss E. S. Smalley and Mr. P. J. Wragg for technical assistance.  相似文献   

3.
Bacteria often use pollutants as sole carbon and energy sources. However, if they are toxic and the concentrations are high these compounds inhibit growth, and eventually poison the biocatalysts. In order to identify mechanisms contributing to stability, the protein patterns of Acinetobacter calcoaceticus during growth on potentially toxic phenol were analysed using two‐dimensional gel electrophoresis. Enzymes involved in the catabolism or assimilation of phenol, such as phenol monooxygenase and catechol 1,2‐dioxygenase, were induced at a more than twofold level in response to long‐term exposure to high concentrations of the compound serving as the sole carbon and energy source. This would have clear adaptive benefits, since increased rates of consumption of phenol would reduce the susceptibility of Acinetobacter calcoaceticus to phenol poisoning. In contrast, transient induction of only one heat shock protein and one oxidative stress protein was detected during long‐term exposure to high concentrations of phenol.  相似文献   

4.
A Pseudomonas sp. strain, CP4, was isolated that used phenol up to 1.5 g/l as sole source of carbon and energy. Optimal growth on 1.5 g phenol/l was at pH 6.5 to 7.0 and 30°C. Unadapted cells needed 72 h to decrease the chemical oxygen demand (COD) of about 2000 mg/l (from 1 g phenol/l) to about 200 mg/l. Adapted cells, pregrown on phenol, required only 65 h to decrease the COD level to below 100 mg/l. Adaptation of cells to phenol also improved the degradation of cresols. Cell-free extracts of strain CP4 grown on phenol or o-, m- or p-cresol had sp. act. of 0.82, 0.35, 0.54 and 0.32 units of catechol 2,3-dioxygenase and 0.06, 0.05, 0.05 and 0.03 units of catechol 1,2-dioxygenase, respectively. Cells grown on glucose or succinate had neither activity. Benzoate and all isomers of cresol, creosote, hydroxybenzoates, catechol and methyl catechol were utilized by strain CP4. No chloroaromatic was degraded, either as sole substrate or as co-substrate.The authors are with the Department of Microbiology and Bioengineering, Central Food Technological Research Institute, Mysore-570 013, India  相似文献   

5.
In this work, the biodegradation mechanism of phenol and sub products (such as catechol and hydroquinone) in Chromobacterium violaceum was investigated by cloning and molecular characterization of a phenol monooxygenase gene in Escherichia coli. This gene (Cvmp) is very similar (74 and 59% of similarity and identity, respectively) to the ortholog from Ralstonia eutropha bacteria capable of utilizing phenol as the sole carbon source. The phenol biodegradation ability of E. coli recombinant strains was tested by cell-growth in a minimal medium containing phenol as the sole source of carbon and release of intermediary metabolites (catechol and hydroquinone). Interestingly, during the growth of these strains on phenol, catechol, and hydroquinone accumulated transiently in the medium. These metabolites were further analyzed by HPLC. These results indicated that phenol can be initially orto or para hydroxylated to produce cathecol or hydroquinone, respectively, followed by meta-cleavage of aromatic rings. To verify this information, the metabolites obtained from HPLC were submitted to LC/MS to confirm their chemical structure, thereby indicating that the recombinant strains utilize two different routes simultaneously, leading to different ring-fission substrates for the metabolism of phenol.  相似文献   

6.
Three aerobic bacterial consortia GY2, GS3 and GM2 were enriched from polycyclic aromatic hydrocarbon-contaminated soils with water-silicone oil biphasic systems. An aerobic bacterial strain utilizing phenanthrene as the sole carbon and energy source was isolated from bacterial consortium GY2 and identified as Sphingomonas sp. strain GY2B. Within 48 h and at 30°C the strain metabolized 99.1% of phenanthrene (100 mg/l) added to batch culture in mineral salts medium and the cell number increased by about 40-fold. Three metabolites 1-hydroxy-2-naphthoic acid, 1-naphthol and salicylic acid, were identified by gas chromatographic mass spectrometry and UV–visible spectroscopy analysis. A degradation pathway was proposed based on the identified metabolites. In addition to phenanthrene, strain GY2B could use other aromatic compounds such as naphthalene, 2-naphthol, salicylic acid, catechol, phenol, benzene and toluene as a sole source of carbon and energy.  相似文献   

7.
Aspergillus fumigatus (ATCC 28282), a thermotolerant fungus, has been shown to be capable of growth on phenol as the sole carbon and energy source. During growth of the organism on phenol, catechol and hydroquinone accumulated transiently in the medium; cells grown on phenol oxidised these compounds without a lag period. Two different routes operating simultaneously, leading to different ring-fission substrates, are proposed for the metabolism of phenol. In one route, phenol undergoes ortho-hydroxylation to give catechol, which is then cleaved by an intradiol mechanism leading to 3-oxoadipate. In the other route, phenol is hydroxylated in the para-position to produce hydroquinone, which is then converted into 1,2,4-trihydroxybenzene for ring fission by ortho-cleavage to give maleylacetate. Cell-free extracts of phenol-grown mycelia were found to contain enzymic activities for the proposed steps. Two ring-fission dioxygenases, one active towards 1,2,4-trihydroxybenzene, but not catechol, and one active towards both ring-fission substrates, were separated by FPLC. Succinate-grown mycelia did not oxidise any of the intermediates until a clear lag period had elapsed and did not contain any of the enzymic activities for phenol metabolism.  相似文献   

8.
Summary The soil yeast Trichosporon cutaneum was grown in continuous culture on phenol, acetate or glucose as sole carbon source. The activities of enzymes participating in the tricarboxylic acid cycle, glyoxylate cycle, 3-oxoadipate pathway, pentose phosphate pathway and glycolysis were determined in situ during shifts of carbon sources. Cells grown on phenol or glucose contained basal activity of the glyoxylate-cycle-specific isocitrate lyase. The derepression of the glyoxylate cycle enzymes was partly hindered in the presence of phenol but not in the presence of low levels of glucose. Phenol and glucose caused repression of isocitrate lyase. In the presence of either phenol or glucose, acetate accumulation in the medium increased. However, part of the supplied acetate was utilized simultaneously with phenol or glucose, the utilization rate of either carbon source being reduced in the presence of the other carbon source. Acetate caused repression but not inactivation of the phenol-degrading enzymes, phenol hydroxylase and catechol 1,2-dioxygenase. The simultaneous utilization of phenol and other carbon sources in continuous culture as well as the observed repression-derepression patterns of the involved enzymes reveal T. cutaneum to be an organism of interest for possible use in decontamination processes. Offprint requests to: H. Y. Neujahr Offprint requests to: H. Y. Neujahr  相似文献   

9.
The Penicillium strain Bi 7/2 able to grow on phenol as sole source of carbon and energy was isolated from a contaminated soil in Bitterfeld (East Germany). The strain is adapted to high phenol concentrations. Spores germinated still at a phenol concentration of 1.5 g/l. Phenol is degraded by the ortho-pathway with catechol as first intermediary product. The Penicillium strain metabolizes 4-, 3- and 2-chlorophenol with decreasing rates with phenol or glucose as cosubstrate. In the case of 4-chlorophenol 4-chlorocatechol was detected as intermediary product, further degraded as indicated by release of about 35% of the bound chlorine of the aromatic molecule. The strain also cometabolically metabolizes 4-, 3- and 2-nitrophenol. The final product of 3- and 4-nitrophenol is 4-nitrocatechol.  相似文献   

10.
《Process Biochemistry》2007,42(3):401-408
This study systematically characterized an aerobic bacterial strain Sphingomonas sp. GY2B for biotransformation of phenanthrene. The strain was isolated from soils contaminated with polycyclic aromatic hydrocarbons (PAHs) and was shown to efficiently use phenanthrene as the sole carbon and energy source. The antibiotics discs susceptibility test revealed that the bacterium was susceptible to some commonly used antibiotics, such as cefuroxime, chloramphenicol, erythromycin and tetracycline. It showed better growth at pH 7.4 and 30 °C and in a mineral salts medium (MSM) with phenanthrene at 100 mg L−1 as the substrate. The results indicated that 99.8% of the substrate had been degraded and that salicylate route was likely the metabolic pathway. When added as the second organic chemical, glucose could enhance the bacterial growth at low concentration (10–200 mg L−1), but could inhibit cell growth at high concentration (>500 mg L−1). Further study showed that strain GY2B could also use naphthalene, phenol, 1-hydroxy-2-naphthoic acid, 2-naphthol, salicylic acid and catechol as the sole carbon and energy source, but did not grow on 1-naphthol which could be co-metabolized in the present of phenanthrene or 1-hydroxy-2-naphthoic acid.  相似文献   

11.
The ability of strain Rhodococcus opacus 1CP to utilize 3-hydroxybenzoate (3-HBA) and gentisate in concentrations up to 600 and 700 mg/L, respectively, as sole carbon and energy sources in liquid mineral media was demonstrated. Using high-performance liquid chromatography (HPLC) and thin-layer chromatography, 2,5-dihydroxybenzoate (gentisate) was identified as the key intermediate of 3-hydroxybenzoate transformation. In the cell-free extracts of the strain grown on 3-HBA or gentisate, the activities of 3-hydroxybenzoate 6-hydroxylase, gentisate 1,2-dioxygenase, and maleylpyruvate isomerase were detected. During growth on 3-HBA, low activity of catechol 1,2-dioxygenase was detected. Based on the data obtained, the pathway of 3-HBA metabolism by strain R. opacus 1CP was proposed.  相似文献   

12.
1. The addition of aniline to cultures of several yeasts, Fusarium oxysporum and Neurospora crassa growing with protocatechuate as sole carbon source resulted in the precipitation of dianilino-o-benzoquinone (anil). This product was also formed, however, if the medium was uninoculated. 2. The physical presence of yeast cells (living or dead) increased the anil yields in Debaryomyces subglobosus cultures. 3. No anil was formed if p-hydroxybenzoate was the growth substrate. 4. o-Benzoquinone was a strong inhibitor of protocatechuate 3,4-oxygenase and catechol 1,2-oxygenase in these fungi. 5. It was concluded that o-benzoquinone formation from protocatechuate is independent of living yeast.  相似文献   

13.
Pseudomonas fluorescens was grown on mineral salts media with phenol, p-hydroxybenzoic acid, p-hydroxy-phenylacetic acid, or p-hydroxy-trans-cinnamic acid as sole carbon and energy source. Each compound was first hydroxylated, ortho to the hydroxyl group on the benzene ring, to give catechol, protocatechuic acid (3,4-dihydroxy-benzoic acid), homoprotocatechuic acid (3,4-dihydroxy-phenylacetic acid), and caffeic acid (3,4-dihydroxy-trans-cinnamic acid), respectively, as the ultimate aromatic products before cleavage of the benzene nucleus. Protocatechuic acid and caffeic acid were shown to be cleaved by ortho fission, via a 3,4-oxygenase mechanism, to give beta-substituted cis, cis-muconic acids as the initial aliphatic products. However, catechol and homoprotocatechuic acid were cleaved by meta fission, by 2,3-and 4,5-oxygenases, respectively, to give alpha-hydroxy-muconic semialdehyde and alpha-hydroxy-gamma-carboxymethyl muconic semialdehyde as initial aliphatic intermediates. Caffeic acid: 3,4-oxygenase, a new oxygenase, consumes 1 mole of O(2) per mole of substrate and has an optimal pH of 7.0. The mechanism of cleavage of enzymes derepressed for substituted catechols by P. fluorescens apparently changes from ortho to meta with the increasing nephelauxetic (electron donor) effect of the side-chain substituent.  相似文献   

14.
A Delftia tsuruhatensis strain capable of consuming aniline as the sole source of carbon, nitrogen, and energy at concentrations of up to 3200 mg/l was isolated from activated sludge of the sewage disposal plants of OAO Volzhskii Orgsintez. The strain grew on catechol and p-hydroxybenzoic acid but did not consume phenol, 2-aminophenol, 3-chloroaniline, 4-chloroaniline, 2,3-dichloroaniline, 2,4-dichloroaniline, 3,4-dichloroaniline, 2-nitroaniline, 2-chlorophenol, or aminobenzoate. Aniline is degraded by cleavage of the catechol aromatic ring at the ortho position. Cells were immobilized on polycaproamide fiber. It was shown that the strain degraded aniline at 1000 mg/l in a continuous process over a long period of time.  相似文献   

15.
A bacterium capable of using the carbamate insecticide carbofuran as a sole source of carbon and energy, was isolated from soil. The ability to catabolise carbofuran phenol, produced by cleavage of the carbamate ester linkage of the insecticide, was lost at very high frequency when the bacterium was grown in the absence of carbofuran. Plasmid analyses together with curing and mating experiments indicated that the presence of a large plasmid (pIH3, >199 kb) was required for the degradation of carbofuran phenol.Abbreviations Rifr Rifampicin resistant - Rifs Rifampicin sensitive - CFH+ Carbofuran hydrolase activity present - CFH- Carbofuran hydrolase activity absent - CFP+ ability to degrade carbofuran phenol present - CFP- ability to degrade carbofuran phenol absent - MS mineral salts medium. MSCF minimal mineral salts medium containing 0.25 mM carbofuran as sole source of carbon and energy - YP MS medium containing 5 g/l yeast extract and 5 g/l Bactopeptone. YPCF as above but with the addition of 1 mM carbofuran - EPTC S-ethyl-N,N-dipropylthiocarbamate - 2,4-D 2,4-dichlorophenoxyacetic acid - NAG N-acetylglucosamine - 3-HB 3-hydroxybutyrate  相似文献   

16.
Degradation of phenol and phenolic compounds by Pseudomonas putida EKII   总被引:3,自引:0,他引:3  
Summary The phenol-degrading strain Pseudomonas putida EKII was isolated from a soil enrichment culture and utilized phenol up to 10.6 mM (1.0 g·1 -1) as the sole source of carbon and energy. Furthermore, cresols, chlorophenols, 3,4-dimethylphenol, and 4-chloro-m-cresol were metabolized as sole substrates by phenol-grown resting cells of strain EKII. Under conditions of cell growth, degradation of these xenobiotics was achieved only in co-metabolism with phenol. Phenol hydroxylase activity was detectable in whole cells but not in cell-free extracts. The specificity of the hydroxylating enzyme was found during transformation of cresols and chlorophenols: ortho- and meta-substituted phenols were degraded via 3-substituted catechols, while degradation of para-substituted phenols proceeded via 4-substituted catechols. In cell-free extracts of phenol-grown cells a high level of catechol 2,3-dioxygenase as well as smaller amounts of 2-hydroxymuconic semialdehyde hydrolyase and catechol 1,2-dioxygenase were detected. The ring-cleaving enzymes were characterized after partial purification by DEAE-cellulose chromatography.  相似文献   

17.
Six species of free-living nitrogen fixing bacteria, Azomonas agilis, Azospirillum brasilense, Azospirillum lipoferum, Azotobacter chroococcum, Azotobacter vinelandii, and Beijerinckia mobilis, were surveyed for their ability to grow and fix N2 using aromatic compounds as sole carbon and energy source. All six species grew and expressed nitrogenase activity on benzoate, catechol, 4-hydroxybenzoate, naphthalene, protocatechuate, and 4-toluate. In many cases, growth rates on one or more aromatic compounds were comparable to or greater than those on the non-aromatic substrates routinely used for cultivation of the organisms. Specific activity of nitrogenase in extracts of aromatic-grown cells often exceeded that in cells grown on non-aromatic substrates. All six species growing on substrates typically converted to catechol expressed inducible catechol 1,2-dioxygenase and/or catechol 2,3-dioxygenase. When grown on substrates typically converted to protocatechuate, inducible protocatechuate 3,4-dioxygenase and/or protocatechuate 4,5-dioxygenase was expressed. A. chroococcum expressed only ortho cleavage dioxygenases during growth on naphthalene and 4-toluate and only meta cleavage dioxygenases on the other aromatics. B. mobilis expressed only ortho cleavage dioxygenases. The other four species examined expressed both ortho and meta cleavage enzymes.A preliminary account of this work was presented at the 91st General Meeting of the American Society for Microbiology, Dallas, TX, 1991  相似文献   

18.
Strain KUFI-6N of Exophiala jeanselmei, a cyclohexanol-utilizing yeast-like fungus, was found to grow on 3 isomers of hydroxybenzoate that functioned as the sole carbon sources. Distinct and highly specific hydroxylases converted p- and m-hydroxybenzoate to protocatechuate and o-hydroxybenzoate to catechol.  相似文献   

19.
Feng Z  Peng L  Chen M  Li M 《Folia microbiologica》2012,57(5):379-386
An agar-degrading bacterium, Rhodococcus sp. Q5, was isolated from printing and dyeing wastewater using a mineral salts agar plate containing agar as the sole carbon source. The bacterium grew from pH 4.0 to 9.0, from 15 to 35°C, and in NaCl concentrations of 0–5 %; optimal values were pH 6.0, 30°C, and 1 % NaCl. Maximal agarase production was observed at pH 6.0 and 30°C. The bacterium did not require NaCl for growth or agarase production. The agarase secreted by Q5 was inducible by agar and was repressed by all simple sugars tested except lactose. Strain Q5 could hydrolyze starch but not cellulose or carboxymethyl cellulose. Agarase activity could also be detected in the medium when lactose or starch was the sole source of carbon and energy. Strain Q5 could grow in nitrogen-free mineral media; an organic nitrogen source was more effective than inorganic carbon sources for growth and agarase production. Addition of more organic nitrogen (peptone) to the medium corresponded with reduced agarase activity.  相似文献   

20.
Aerobic degradation of 7 mmol/L phenol in the presence of alternative carbon sources (7 mmol/L glucose or acetate or 1–2 mmol/L 2‐chlorophenol) was investigated using non‐acclimatized and acclimatized sewage sludges and enrichment cultures. The substrates represented an intermediate of phenol degradation (acetate), an independent substrate (glucose) or a “precursor‐substrate” of phenol degradation (2‐chlorophenol). Bacteria from sewage sludge, not pre‐adapted to phenol (2 mmol/L), rapidly respired acetate and glucose in the presence of phenol, whereas phenol was only bioconverted to any unknown aromatic metabolite after 24 h. In the presence of phenol and 2‐chlorophenol, no removal of both substances was observed when using the unacclimatized sludge. Sludge that was acclimatized to the degradation of phenol showed an initial preference for easily degradable co‐substrates such as glucose or acetate with only a slow concomitant respiration of phenol. Respiration of phenol increased rapidly after the co‐substrates were depleted. The highest phenol degradation rates were 51.6 mmol/L d, when phenol was the sole carbon substrate. Vice versa, phenol was preferentially respired in the presence of a less easily degradable co‐substrate such as 2‐chlorophenol at a rate of around 7 mmol/L d. Further studies with an enrichment culture that was obtained after 7 successive transfers of phenol‐adapted sludge into mineral medium with phenol as the only carbon source indicated that the acetate and glucose‐degrading capabilities were diminished or almost completely lost. In these enrichment cultures, phenol degradation was not affected by the presence of glucose, but glucose was not degraded. In contrary, the presence of acetate slightly slowed down the phenol degradation rate of the enrichment culture. Growth of the microorganisms apparently occurred at the expense of phenol and acetate respiration. The result of this work may be of practical importance in determining the feeding strategy, which is the key factor for most biological wastewater treatment systems. When acetate was present together with phenol in a wastewater, the phenol degradation rates were influenced by acetate, since acetate was an intermediate of phenol degradation. Glucose as an “independent substrate” was apparently degraded by other bacteria via acetate, and in this way it also influenced the phenol degradation rates. Glucose‐degrading bacteria could be “washed out” from the acclimatized sludge during several transfers into mineral medium with phenol as the sole carbon source. If later on, glucose was added again, it remained undegraded and did not influence phenol degradation. 2‐Chlorophenol degradation also requires other bacteria than phenol degraders.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号