共查询到20条相似文献,搜索用时 15 毫秒
1.
Daniel C Schröder O Zahn N Gaschott T Stein J 《Biochemical and biophysical research communications》2004,324(4):1220-1226
Previously, we have demonstrated that the butyrate-induced differentiation in the human colon cancer cell line Caco-2 occurs via upregulation of the vitamin D receptor (VDR). However, the downstream pathways involved are unknown. The mitogen-activated protein kinases (MAPKs) have been shown to play an important role in regulation of cell differentiation, and may therefore be a potential target of butyrate action. To assess their role in butyrate-mediated cell differentiation and VDR expression, we used the specific p38-MAPK inhibitor SB203580 and the ERK1/2 MAPK-inhibitor PD98059. The p38-MAPK inhibitor abolished the butyrate effect on VDR expression and cell differentiation, while the ERK1/2 inhibitor did not influence the butyrate-mediated induction of cell differentiation and VDR expression. The essential role of the p38 pathway in up-regulation of VDR expression was further confirmed by using the p38 stimulator arsenite. These results imply an important role of the p38-MAPK in regulation of cellular differentiation through upregulation of VDR expression by butyrate. 相似文献
2.
Differentiation therapy for neoplastic diseases has potential for supplementing existing treatment modalities but its implementation has been slow. One of the reasons is the lack of full understanding of the complexities of cellular pathways through which signals for differentiation lead to cell maturation. This was addressed in this study using HL60 cells, a well-established model of differentiation of neoplastic cells. SB 203580 and SB 202190, specific inhibitors of a signaling protein p38 MAP kinase, were found to markedly accelerate monocytic differentiation of HL60 cells induced by low concentrations of 1,25-dihydroxyvitamin D(3) (1,25D(3)). Surprisingly, inhibition of p38 activity resulted in sustained enhancement of p38 phosphorylation and of its in vitro activity in the absence of the inhibitor, indicating up-regulation of the upstream components of the p38 pathway. In addition, SB 203580 or SB 202190 treatment of HL60 cells resulted in a prolonged activation of the JNK and, to a lesser extent, the ERK pathways. The data are consistent with the hypothesis that in HL60 cells an interruption of a negative feedback loop from a p38 target activates a common regulator of multiple MAPK pathways. The possibility also exists that JNK and/or ERK pathways amplify a differentiation signal provided by 1,25D(3). 相似文献
3.
4.
5.
Tanya Seth-Vollenweider Sneha Joshi Puneet Dhawan Said Sif Sylvia Christakos 《The Journal of biological chemistry》2014,289(49):33958-33970
6.
7.
8.
Mingke Wang Yongping Su Huiqin Sun Tao Wang Guohe Yan Xinze Ran Fengchao Wang Tianming Cheng Zhongmin Zou 《Differentiation; research in biological diversity》2010
A murine embryonic mesenchymal cell line C3H/10T1/2 possesses the potential to differentiate into multiple cell phenotypes and has been recognized as multipotent mesenchymal stem cells, but no in vitro model of its endothelial differentiation has been established and the effect of angiogenic factors on the differentiation is unknown. The aim of the present study was to evaluate the role of angiogenic factors in inducing endothelial differentiation of C3H/10T1/2 cells in vitro. C3H/10T1/2 cells were treated with angiogenic factors, VEGF (10 ng/mL) and bFGF (5 ng/mL). At specified time points, cells were subjected to morphological study, immunofluorescence staining, RT-PCR, LDL-uptake tests and 3-D culture for the examination of the structural and functional characteristics of endothelial cells. Classic cobblestone-like growth pattern appeared at 6 day of the induced differentiation. Immunofluorescence staining and RT-PCR analyses revealed that the induced cells exhibited endothelial cell-specific markers such as CD31, von Willebrand factor, Flk1, Flt1, VE-cadherin, Tie2, EphrinB2 and Vezf1 at 9 day. The induced C3H/10T1/2 cells exhibited functional characteristics of the mature endothelial phenotype, such as uptake of acetylated low-density lipoproteins (Ac-LDL) and formation of capillary-like structures in three-dimensional culture. At 9 day, Weibel–Palade bodies were observed under a transmission electron microscope. This study demonstrates, for the first time, endothelial differentiation of C3H/10T1/2 cells induced by angiogenic factors, VEGF and bFGF, and confirms the multipotential differentiation ability. This in vitro model is useful for investigating the molecular events in endothelial differentiation of mesenchymal stem cells. 相似文献
9.
Wu Zhong Haichuan Zhu Fugeng Sheng Yonglu Tian Jun Zhou Yingyu Chen Song Li Jian Lin 《Autophagy》2014,10(7):1285-1300
10.
Spinsanti P De Vita T Caruso A Melchiorri D Misasi R Caricasole A Nicoletti F 《Journal of neurochemistry》2008,104(6):1588-1598
11.
12.
Md Zahidul I. Pranjol Nicholas J. Gutowski Michael Hannemann Jacqueline L. Whatmore 《Biochimica et Biophysica Acta (BBA)/Molecular Cell Research》2018,1865(1):25-33
Epithelial ovarian cancer (EOC) frequently metastasises to the omentum, a process that requires pro-angiogenic activation of human omental microvascular endothelial cells (HOMECs) by tumour-secreted factors. We have previously shown that ovarian cancer cells secrete a range of factors that induce pro-angiogenic responses e.g. migration, in HOMECs including the lysosomal protease cathepsin D (CathD). However, the cellular mechanism by which CathD induces these cellular responses is not understood. The aim of this study was to further examine the pro-angiogenic effects of CathD in HOMECs i.e. proliferation and migration, to investigate whether these effects are dependent on CathD catalytic activity and to delineate the intracellular signalling kinases activated by CathD. We report, for the first time, that CathD significantly increases HOMEC proliferation and migration via a non-proteolytic mechanism resulting in activation of ERK1/2 and AKT. These data suggest that EOC cancer secreted CathD acts as an extracellular ligand and may play an important pro-angiogenic, and thus pro-metastatic, role by activating the omental microvasculature during EOC metastasis to the omentum. 相似文献
13.
《Autophagy》2013,9(10):1527-1539
A high MAPK1/3 (also known as ERK2/1, respectively) activity, preventing spontaneous activation, is essential to maintain cell cycle arrest of mature oocytes of mammals, frogs or invertebrates such as starfish. Mature oocytes would undergo a “suicide”-like cell death if not fertilized. We previously have reported that downregulation of MAPK1/3 in unfertilized sea urchin eggs induces a calcium-dependent entry into mitosis. We show here that this event is followed by a series of pseudo-mitotic cell cycles associated with transient Cai increases, preceding CASP3/caspase-3 activation and apoptosis. However, cell death was delayed after inhibition of the Cai transients or of cyclin-dependent kinases (CDK), with roscovitine. In these conditions, eggs enter an autophagy program as suggested by detection of processed LC3B by western blot, immunofluorescence and immunogold staining, visualization of autophagy vesicles by electron microscopy, and an increase in acidic vesicular organelles (AVOs). We found that bafilomycin A1 or an association of leupeptin and pepstatin, which are widely used to study autophagy, may act upon calcium signaling or cell cycle events, respectively, and not only on autophagy events. Finally, inhibition of PtdIns 3-kinase with wortmannin or LY294002 powerfully stimulated cell death of unfertilized eggs, which suggests that this activity does not negatively regulate autophagy as is often reported, but rather stimulates survival in unfertilized eggs. We suggest that apoptosis of unfertilized eggs is the consequence of an aberrant short attempt of development that occurs if MAPK1/3 is inactivated, but these eggs can use autophagy as a survival program when the cell cycle is blocked. 相似文献
14.
15.
Mutation R453W in A-type lamins, that are major nuclear envelope proteins, generates Emery-Dreifuss muscular dystrophy. We previously showed that mouse myoblasts expressing R453W-lamin A incompletely exit the cell cycle and differentiate into myocytes with a low level of multinucleation. Here we attempted to improve differentiation by treating these cells with a mixture of PD98059, an extracellular-regulated kinase (ERK) kinase (also known as mitogen-activated kinase, MEK) inhibitor, and insulin-like growth factor-II, an activator of phosphoinositide 3-kinase. We show that mouse myoblasts expressing R453W-lamin A were sensitive to the drug treatment as shown by (i) an increase in multinucleation, (ii) downregulation of proliferation markers (cyclin D1, hyperphosphorylated Rb), (iii) upregulation of myogenin, and (iv) sustained activation of p21 and cyclin D3. However, nuclear matrix anchorage of p21 and cyclin D3 in a complex with hypophosphorylated Rb that is critical to trigger cell cycle arrest and myogenin induction was deficient and incompletely restored by drug treatment. As the turn-over of R453W-lamin A at the nuclear envelope was greatly enhanced, we propose that R453W-lamin A impairs the capacity of the nuclear lamina to serve as scaffold for substrates of the MEK-ERK pathway and for MyoD-induced proteins that play a role in the differentiation process. 相似文献
16.
17.
Michal Grzmil Brian A. Hemmings 《Biochimica et Biophysica Acta - Proteins and Proteomics》2013,1834(7):1371-1380
Glioblastoma is the most common and aggressive brain tumor type, with a mean patient survival of approximately 1 year. Many previous analyses of the glioma kinome have identified key deregulated pathways that converge and activate mammalian target of rapamycin (mTOR). Following the identification and characterization of mTOR-promoting activity in gliomagenesis, data from preclinical studies suggested the targeting of mTOR by rapamycin or its analogs (rapalogs) as a promising therapeutic approach. However, clinical trials with rapalogs have shown very limited efficacy on glioma due to the development of resistance mechanisms. Analysis of rapalog-insensitive glioma cells has revealed increased activity of growth and survival pathways compensating for mTOR inhibition by rapalogs that are suitable for therapeutic intervention. In addition, recently developed mTOR inhibitors show high anti-glioma activity. In this review, we recapitulate the regulation of mTOR signaling and its involvement in gliomagenesis, discuss mechanisms resulting in resistance to rapalogs, and speculate on strategies to overcome resistance. This article is part of a Special Issue entitled: Inhibitors of Protein Kinases (2012). 相似文献
18.
Guadalupe Martel-Gallegos Griselda Casas-Pruneda Filiberta Ortega-Ortega Sergio Sánchez-Armass Jesús Alberto Olivares-Reyes Becky Diebold Patricia Pérez-Cornejo Jorge Arreola 《Biochimica et Biophysica Acta (BBA)/General Subjects》2013
Background
Activation of ATP-gated P2X7 receptors (P2X7R) in macrophages leads to production of reactive oxygen species (ROS) by a mechanism that is partially characterized. Here we used J774 cells to identify the signaling cascade that couples ROS production to receptor stimulation.Methods
J774 cells and mP2X7-transfected HEK293 cells were stimulated with Bz-ATP in the presence and absence of extracellular calcium. Protein inhibitors were used to evaluate the physiological role of various kinases in ROS production. In addition, phospho-antibodies against ERK1/2 and Pyk2 were used to determine activation of these two kinases.Results
ROS generation in either J774 or HEK293 cells (expressing P2X7, NOX2, Rac1, p47phox and p67phox) was strictly dependent on calcium entry via P2X7R. Stimulation of P2X7R activated Pyk2 but not calmodulin. Inhibitors of MEK1/2 and c-Src abolished ERK1/2 activation and ROS production but inhibitors of PI3K and p38 MAPK had no effect on ROS generation. PKC inhibitors abolished ERK1/2 activation but barely reduced the amount of ROS produced by Bz-ATP. In agreement, the amount of ROS produced by PMA was about half of that produced by Bz-ATP.Conclusions
Purinergic stimulation resulted in calcium entry via P2X7R and subsequent activation of the PKC/c-Src/Pyk2/ERK1/2 pathway to produce ROS. This signaling mechanism did not require PI3K, p38 MAPK or calmodulin.General significance
ROS is generated in order to kill invading pathogens, thus elucidating the mechanism of ROS production in macrophages and other immune cells allow us to understand how our body copes with microbial infections. 相似文献19.
Isabelle Cornez 《FEBS letters》2010,584(12):2681-2688
A variety of immunoregulatory signals to effector T cells from monocytes, macrophages and regulatory T cells act through cyclic adenosine monophosphate. In the effector T cell, the protein kinase A (PKA) type I isoenzyme localizes to lipid rafts during T cell activation and modulates directly the proximal events that take place after engagement of the T cell receptor. The most proximal target for PKA phosphorylation is C-terminal Src kinase (Csk), which initiates a negative signal pathway that fine-tunes the T cell activation process. The A kinase anchoring protein Ezrin colocalizes PKA and Csk by forming a supramolecular signaling complex consisting of PKA, Ezrin, Ezrin/radixin/moesin (ERM) binding protein of 50 kDa (EBP50), phosphoprotein associated with glycosphingolipid-enriched membrane microdomains (GEMs) (PAG) and Csk. 相似文献
20.