首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The content of some heavy metals in leafy epigeous mosses and upper soil layer of the large Moscow parks has been studied. The peculiarities in accumulation of heavy metals by different moss species have been pointed out. The content of heavy metals in leafy epigeous mosses has been found to be closely connected with the content of these elements in upper soil layer.  相似文献   

2.
Climate warming enables tree seedling establishment beyond the current alpine treeline, but to achieve this, seedlings have to establish within existing tundra vegetation. In tundra, mosses are a prominent feature, known to regulate soil temperature and moisture through their physical structure and associated water retention capacity. Moss presence and species identity might therefore modify the impact of increases in temperature and precipitation on tree seedling establishment at the arctic‐alpine treeline. We followed Betula pubescens and Pinus sylvestris seedling survival and growth during three growing seasons in the field. Tree seedlings were transplanted along a natural precipitation gradient at the subarctic‐alpine treeline in northern Sweden, into plots dominated by each of three common moss species and exposed to combinations of moss removal and experimental warming by open‐top chambers (OTCs). Independent of climate, the presence of feather moss, but not Sphagnum, strongly supressed survival of both tree species. Positive effects of warming and precipitation on survival and growth of B. pubescens seedlings occurred in the absence of mosses and as expected, this was partly dependent on moss species. P. sylvestris survival was greatest at high precipitation, and this effect was more pronounced in Sphagnum than in feather moss plots irrespective of whether the mosses had been removed or not. Moss presence did not reduce the effects of OTCs on soil temperature. Mosses therefore modified seedling response to climate through other mechanisms, such as altered competition or nutrient availability. We conclude that both moss presence and species identity pose a strong control on seedling establishment at the alpine treeline, and that in some cases mosses weaken climate‐change effects on seedling establishment. Changes in moss abundance and species composition therefore have the potential to hamper treeline expansion induced by climate warming.  相似文献   

3.
Mosses are one of the most diverse and widespread groups of plants and often form the dominant vegetation in montane, boreal and arctic ecosystems. However, unlike higher plants, mosses lack developed root and vascular systems, which is thought to limit their access to soil nutrients. Here, we test the ability of two physiologically and taxonomically distinct moss species to take up soil- and wet deposition-derived nitrogen (N) in natural intact turfs using stable isotopic techniques (15N). Both species exhibited increased concentrations of shoot 15N when exposed to either soil- or wet deposition-derived 15N, demonstrating conclusively and for the first time, that mosses derive N from the soil. Given the broad physiological and taxonomic differences between these moss species, we suggest soil N uptake may be common among mosses, although further studies are required to test this prediction. Soil N uptake by moss species may allow them to compete for soil N in a wide range of ecosystems. Moreover, since many terrestrial ecosystems are N limited, soil N uptake by mosses may have implications for plant community structure and nutrient cycling. Finally, soil N uptake may place some moss species at greater risk from N pollution than previously appreciated.  相似文献   

4.
北京小龙门自然保护区四种苔藓鸟巢的观察   总被引:4,自引:0,他引:4  
2004年8月20~22日在北京小龙门自然保护区,分别对宝兴歌鸫(Turdus mupinensis)、黄眉姬鹪(Ficedula narcissina)、白腹蓝鸫(Cyanoptila cyanomelana)和北红尾鸲(Phoenicurusauroreus)4种鸟的鸟巢的结构和巢材进行了观察,发现他们均用藓类植物作为巢材。经过鉴定,这些藓类植物共7种,分属于4科,其中最多是小牛舌藓(Anomodon minor)。该文还对巢材中藓类植物的分布、生物学特性和鸟类取材的行为等进行了初步分析。  相似文献   

5.
利用红油漆标记法,对青藏高原东缘地区壤塘林业局二林场亚高山采伐迹地和云杉(Picea)原始林中的6种藓类近一个生长季的生长速率进行了研究。结合原地同时进行的微气候观测,分析了气候因子和藓类生长速率之间的相关度。这6种藓类中,有5种在原始林和采伐迹地都出现,只有绢藓(Entodon conncinus)仅在采伐迹地出现。不同物种和不同生境条件下藓类的生长速率都不相同。塔藓(Hylocomium splendens)的茎生长速率最大,而阿萨姆曲尾藓(Dicranum assamicum)生长速率最小。生境对塔藓、阿萨姆曲尾藓和细叶羽藓(Thuidium lepidoziaceum)的生长速率影响很大,它们在林内比在采伐迹地生长快。锦丝藓(Actinothuidium hookeri)和垂枝藓(Rhytidiadelphus triquetrus)的生长速率中等并且对生境不敏感。据此可以将藓类分成生境敏感型和不敏感型。微气候5~7月分析显示林内比采伐迹地的辐射通量低,并且更为干燥。但是早上林内的蒸汽压亏缺(Vapor pressure deficit, VPD)一直比采伐迹地低。林内较低的蒸汽压亏缺和较低的辐射通量使其成为更有利于藓类的生长场所。对于那些生境类型不敏感的藓类,微地形的效应也许抵消了这种大生境的效应。藓类的生理生态特征如变水(Poikilohydry)特征等对其在严酷气候条件下的生存和生长起着重要的作用。如同积温一样,藓类的生长速率同样可以指示生境的适宜度, 因为其生长和蒸汽压亏缺紧密相关,是温度和湿度的函数,而这两个因素对于川西亚高山地区森林人工更新时幼苗的建植极为关键。因此藓类的生长状况可以作为指示适宜植树生境的指标。  相似文献   

6.
The prenylquinone composition of two species of mosses (Polytrichum formosum Hedw., Sphagnum acutifolium Ehrh.) and two species of liver mosses (Lunularia cruciata (L.) Dum., Pellia epiphylla (L.) Cord.) was determined and compared with the chlorophyll content and the photosynthetic activity of the intact moss and liver moss tissues.
  • 1 Green moss and liver moss tissues possess in principle the same prenylquinone composition as higher plants with plastoquinone-9, α-tocopherol, α-tocoquinone and the phylloquinone K1 as main components. On a chlorophyll basis the lipoquinone levels are lower than in higher plants. Differences among the individual mosses as well as within one species only occur in the quantitative levels of the chloroplast prenylquinones, but there are no differences between musci and liver mosses.
  • 2 There are differences in the maximal fluorescence of liver mosses and mosses. The variable fluorescence in turn, which is a measure of in vivo photosynthetic activity, is very similar for all examined species of mosses and liver mosses (values from 0.7 to 1.0) but somewhat lower than in leaf pieces of higher plants. DCMU blocks the variable fluorescence and the concomitant oxygen evolution in all mosses and liver mosses.
  • 3 From the lower prenylquinone levels and the low values for the variable fluorescence it is concluded that mosses and liver mosses exhibit on a chlorophyll basis fewer reaction centres and electron transport chains than chloroplasts of higher plants.
  相似文献   

7.
入侵植物会通过化感作用等手段抑制本地种的生存繁衍,但本土植物尤其是地被层的藓类植物对入侵植物有何影响尚不清楚。本文以本土羽枝青藓和瘤柄匐灯藓为供体材料,以恶性入侵杂草稗草和野胡萝卜为受试材料,从藓丛结构特征和化感作用角度探究藓类植物对入侵植物种子萌发和幼苗生长的影响。结果表明: 2种入侵植物种子落入藓丛后其发芽率、发芽势和发芽指数均受到显著抑制,抑制效果为藓丛上部>藓丛下部>无藓丛。稗草种子落入藓丛下部会显著影响其根长和根芽比。施加藓类浸提液均显著降低2种入侵植物的发芽率、发芽势及发芽指数,但呈现不同的浓度效应。施加浸提液在一定程度上增加了稗草幼苗芽长、根长和根芽比,但对野胡萝卜无明显的规律性影响。藓类植物对2种入侵植物种子萌发和幼苗生长的化感综合效应均表现为抑制作用,其中,野胡萝卜的敏感性大于稗草,且高浓度下更加明显。可见,藓类植物对入侵植物种子萌发和幼苗生长具有一定抑制作用。  相似文献   

8.
In order to evaluate the importance of growth of mosses in controlling evaporative water loss, the evaporation rates of some subalpine moss species of various growth forms were compared with each other. The growth forms of the xerophytic species examined were large cushion and compact mat, while those of the mesophytic species in the coniferous forest floor were smooth mat, weft and tall turf. The evaporation rate per moss dry weight (Ew) was much smaller in the xerophytic species than in the mesophytic species. However, the evaporation rate per basal area of moss colony (Ea) was not necessarily smaller in the xerophytic species. The relation between Ea and dry weight per basal area of the colony (Wa) had a close correlation with the growth form. It was concluded that the difference in the evaporation rate per weight between the exerophytic species and the mesophytic species was largely due to the difference in Wa, and that the growth forms of the xerophytic species were suitable for increasing Wa without increasing surface roughness.  相似文献   

9.
Question: What determines the balance between the cover values of vascular plants, lichens and mosses in dry calcareous grassland communities? Location: Western Estonia. Methods: A five‐year (2001–2005) study was conducted in a dry calcareous grassland. The cover of mosses, lichens and vascular plants and all moss species was recorded in permanent plots. Vascular plants were cut in half of the plots. Data from a nearby weather station were used to calculate mean values of different weather parameters and a summer moisture index for the study years. Results: Significant differences in cover values between years were found. The fluctuations of total moss cover and the cover of the dominating moss species Ctenidium molluscum followed changes in annual precipitation. Both cover values were highest in years with high precipitation. The cover change of vascular plants was best characterized by the moisture index of the growth period (three summer months). Summers with high moisture indexes facilitated vascular plant and lichen growth. Annual precipitation and the cover of mosses had a negative influence on the cover of vascular plants. The cutting of vascular plants did not have a significant effect on moss and lichen cover. Conclusions: 1. On dry calcareous grasslands the growth of mosses is enhanced by high annual precipitation, while the growth of vascular plants and lichens is influenced rather by the high summer moisture index. The cover of vascular plants is inhibited by the large moss cover. 2. Mowing of vascular plants does not influence the cover of mosses and lichens.  相似文献   

10.
Biological soil crusts dominated by drought-tolerant mosses are commonly found through arid and semiarid steppe communities of the northern Great Basin of North America. We conducted growth chamber experiments to investigate the effects of these crusts on the germination of four grasses: Festuca idahoensis, Festuca ovina, Elymus wawawaiensis and Bromus tectorum. For each of these species, we recorded germination time courses on bare soil and two types of biological soil crusts; one composed predominantly of the tall moss Tortula ruralis and the other dominated by the short moss Bryum argenteum. On the short-moss crust, the final germination percentage was about half of that on bare soil. Also, the mean germination time was 4 days longer on short-mosses than on bare soil. In contrast to the short-moss crust, the tall-moss crust did not reduce the final germination percentage but increased the mean germination time. Similar results were observed in the four grasses studied. To investigate the mechanism by which moss crusts affected germination, we analyzed the water status of seeds on bare soil and moss crusts. Six days after seeding, the water content of seeds on bare soil was approximately twice that of seeds on tall- or short-moss crust. Analysis of the time course of changes in seed weight and water potential in Bromus tectorum revealed that overtime seeds on tall mosses reached higher water content than those on short mosses. The increase in the water content of seeds on tall mosses occurred as the seeds gradually fell through the moss canopy. Taken together, our results indicate that biological soil crusts with distinct structural characteristics can have different effects on seed germination. Furthermore, this study revealed that a biological soil crust dominated by short mosses had a negative effect on seed water status and significantly reduced seed germination.  相似文献   

11.
苔藓植物在园林绿化、水土保持等方面的应用日益增加,目前藓类植物营养繁殖的影响因素鲜见报道,限制了其应用研究。本研究以黄土高原常见的耐干藓(扭口藓、土生对齿藓、短叶对齿藓)为对象,研究了3种藓春、夏、秋、冬季营养繁殖能力(以活力指数表征)差异及其叶绿素、可溶性糖、可溶性蛋白质、丙二醛(MDA)含量等生理指标变化,探索了耐干藓营养繁殖的季节差异与其生理特征之间的关系。结果表明: 1)藓类繁殖具有明显的季节差异,3种藓夏季活力指数均低于其他3个季节,平均较秋、冬、春季分别下降56.1%、48.4%、10.1%;相同季节的活力指数具有明显的年际变化。2)3种藓繁殖能力具有明显的种间差异,以短叶对齿藓最高,扭口藓最低,且后者的繁殖能力季节和年际变化最大。3)3种藓不同季节生理特征差异显著,其中夏季MDA含量高于其他季节,可溶性糖和可溶性蛋白质含量低于其他季节。4)耐干藓的营养繁殖季节变化主要与可溶性糖含量有关。本研究明确了藓类营养繁殖能力随季节变化的规律,指出可溶性糖含量是影响藓类营养繁殖的关键因素,可为藓类植物保护和人工培养提供科学依据。  相似文献   

12.
Although mosses and lichens are a relevant component of the biota of rock habitats targeted for biodiversity conservation in Europe, the ecological factors driving their distribution are still poorly known. In this work, we examined the epilithic moss and lichen assemblages colonizing boulders of different types of calcareous rocks co-occurring in the same area in the Italian Alps. The goals were: (1) to evaluate if and to what extent different calcareous rocks host different assemblages; (2) to identify species associated to each rock type; (3) to quantify the relative importance of rock type, local environmental factors, and habitat spatial structure in explaining species distribution. Our results demonstrated that different calcareous rocks host different moss and lichen assemblages with some typical species, indicating that each rock type contributes to the total diversity of both mosses and lichens. Local environmental conditions influenced mosses and not lichens whose distribution is mainly associated to rock type. The patterns of both organism groups were also significantly related to habitat spatial structure, species assemblages tending to have a patchy distribution, which may reflect dispersal dynamics. Our results have implications for conservation: (1) each rock type may play a relevant role in maintaining the overall diversity contributing with unique assemblages and typical species; (2) the patchy distribution of both moss and lichen assemblages should warn from considering rock patches as a monotonous repetition of the same habitat across space.  相似文献   

13.
Recent studies have revealed that nitrogen fixation by cyanobacteria living in association with feather mosses is a major input of nitrogen to boreal forests. We characterized the community composition and diversity of cyanobacterial nifH phylotypes associated with each of two feather moss species (Pleurozium schreberi and Hylocomium splendens) on each of 30 lake islands varying in ecosystem properties in northern Sweden. Nitrogen fixation was measured using acetylene reduction, and nifH sequences were amplified using general and cyanobacterial selective primers, separated and analyzed using density gradient gel electrophoresis (DGGE) or cloning, and further sequenced for phylogenetic analyses. Analyses of DGGE fingerprinting patterns revealed two host-specific clusters (one for each moss species), and sequence analysis showed five clusters of nifH phylotypes originating from heterocystous cyanobacteria. For H. splendens only, N(2) fixation was related to both nifH composition and diversity among islands. We demonstrated that the cyanobacterial communities associated with feather mosses show a high degree of host specificity. However, phylotype composition and diversity, and nitrogen fixation, did not differ among groups of islands that varied greatly in their availability of resources. These results suggest that moss species identity, but not extrinsic environmental conditions, serves as the primary determinant of nitrogen-fixing cyanobacterial communities that inhabit mosses.  相似文献   

14.
Zhang Y  Guo LD 《Mycorrhiza》2007,17(4):319-325
We investigated the colonization and diversity of arbuscular mycorrhizal (AM) fungi associated with 24 moss species belonging to 16 families in China. AM fungal structures, i.e. spores, vesicles, hyphal coils (including intracellular hyphae), or intercellular nonseptate hyphae, were found in 21 moss species. AM fungal structures (vesicles, hyphal coils, and intercellular nonseptate hyphae) were present in tissues of 14 moss species, and spores and nonseptate hyphae on the surface of gametophytes occurred in 15 species. AM fungal structures were present in 11 of the 12 saxicolous moss species and in six of the ten terricolous moss species, but absent in two epixylous moss species. AM fungal structures were only observed in moss stem and leaf tissues, but not in rhizoids. A total of 15 AM fungal taxa were isolated based on trap culture with clover, using 13 moss species as inocula. Of these AM fungi, 11 belonged to Glomus, two to Acaulospora, one to Gigaspora, and one to Paraglomus. Our results suggest that AM fungal structures commonly occur in most mosses and that diverse AM fungi, particularly Glomus species, are associated with mosses.  相似文献   

15.

Aims

Feather mosses form a thick ground layer in boreal forests that can intercept incoming litter fall. This interception may influence the decomposition of incoming litter but this has been little explored. We investigated how the moss layer influences decomposition of intercepted litter along a 362-year fire driven forest chronosequence in northern Sweden across which soil fertility declines.

Methods

We placed leaf litter from three plant species into plots in which mosses and dwarf shrubs were either experimentally removed or left intact, at each of ten stands across the chronosequence. After one year we measured litter mass loss, and litter nitrogen and phosphorous.

Results

Litter decomposed consistently faster, and had higher nitrogen and phosphorus, in the presence of mosses and at greater depth in the moss layer. Despite an increase in moss depth across the chronosequence we did not find consistent increases in effects of moss removal on litter decomposition or on litter N or P.

Conclusions

Our findings identify a clear role of the moss layer in boreal forests in promoting the decomposition of intercepted leaf litter, and highlight that this role is relatively consistent across chronosequence stages that vary greatly in productivity and moss depth.  相似文献   

16.
Aquatic mosses in the genera Bryum and Leptobryum form unique tower-like ??moss pillars?? underwater in some Antarctic lakes, in association with algae and cyanobacteria. These are communities with a two-layer structure comprising an oxidative exterior and reductive interior. Although habitats and photosynthetic properties of moss pillars have been reported, microfloral composition of the two-layer structure has not been described. Here we report fatty acid analysis of one moss pillar and molecular phylogenetic analysis, based on the 16S rRNA gene, of this and one other moss pillar. Cluster analysis of the phospholipid fatty acid composition showed three groups corresponding to the exterior, upper interior, and lower interior of the pillar. This suggested that species composition differed by section, with the exterior dominated by photosynthetic organisms such as mosses, algae, and cyanobacteria, the upper interior primarily containing gram-positive bacteria and anaerobic sulfate-reducing bacteria, and the lower interior dominated by gram-negative bacteria. Molecular phylogenetic analysis revealed that Proteobacteria dominate the moss pillar as a whole; cyanobacteria were found on the exterior and the gram-positive obligate anaerobe Clostridium in the interior, while gram-positive sulfate-reducing bacteria were present in the lowest part of the interior. Nitrogen-fixing bacteria and denitrifying bacteria were found in all sections. Thus, fatty acid analysis and genetic analysis showed similar patterns. These findings suggest that microorganisms of different phylogenetic groups inhabit different sections of a single moss pillar and form a microbial community that performs biogeochemical cycling to establish and maintain a structure in an oxidation?Creduction gradient between exterior and interior.  相似文献   

17.
The artificial cultivation of moss biocrusts can accelerate the recovery of degraded arid lands and is closely related to moss productivity. Understanding the properties of inoculation materials on the regenerative capacity of mosses, in particular the effect of time limits on storage, has the potential to benefit the cultivation of artificial moss biocrusts. We investigated the vegetative regeneration and physiological characteristics of three desiccation‐tolerant mosses (Barbula unguiculata, Didymodon vinealis, and Didymodon tectorum) upon rehydration after periods of desiccation storage for 40, 89, 127, and 197 days. Regenerative capacity, represented by gametophyte vigor index, decreased with increased storage time. The greatest change in vegetative regeneration among storage times was observed in B. unguiculata, where the gametophyte vigor index decreased by 95.74% after 197 days of storage. Over the same period, there were smaller decreases in gametophyte vigor index of D. vinealis and D. tectorum of 42.17% and 13.30%, respectively. Malondialdehyde and soluble sugar increased with longer periods of storage time, while soluble protein content first increased, then decreased. Oxidation levels are important factors influencing the recovery of desiccation‐tolerant mosses. All three moss species regenerated after 197 days of storage, but regenerative capacity is dependent on species. For land managers, biocrust restoration can be facilitated by careful screening of suitable moss species, based on their capacity to regenerate new growth after extended periods of storage and selection of species based on variations in physiological characteristics.  相似文献   

18.
Bryophytes (mosses) are non‐vascular plants inhabited by a large number of fungal species, but whether mosses can act as reservoirs of fungal pathogens of crop plants has gained little attention. A few moss species including the Sunagoke moss (Racomitrium japonicum; family Grimmiaceae) are found to have modern economical applications in uses such as greening of urban environments. In a previous study, we identified fungi causing symptoms of varying severity in the commercially grown Sunagoke moss. The aim of this study was to test whether the same fungal isolates are pathogenic to vascular plants. An isolate of Fusarium avenaceum lethal to the Sunagoke moss caused root and crown rot in barley (Hordeum vulgare) and reduced germination of tomato (Solanum lycopersicum) and carrot (Daucus carota) grown in the infested soil. An isolate of Cladosporium oxysporum causing mild symptoms in moss reduced growth and caused reddening and premature death of carrot seedlings. On the other hand, isolates of Alternaria alternata and Fusarium oxysporum lethal to the Sunagoke moss caused no detectable symptoms in any tested vascular plant, suggesting specialisation of these isolates to moss. Chloroplast repositioning was observed in the neighbouring cells towards the initially infected cell following infection with F. avenaceum and A. alternata in Physcomitrella patens (family Funariaceae), a model moss used to study microscopic symptoms. Infection of P. patens with a non‐virulent Apiospora montagnei isolate induced formation of papillae in the moss cells, indicating activation of host defence as described in vascular plants. Results suggest that mosses and vascular plants may be linked by a common microbial interface constituted by pathogenic fungi. The findings have epidemiological implications that have gained little previous attention.  相似文献   

19.
干扰会导致生物结皮斑块破碎并退化。为明确生物结皮斑块破碎诱发生物结皮退化机理,以黄土丘陵区土生对齿藓(Didymodon vinealis)结皮为研究对象,研究了干燥-复水条件下,单株和直径1 cm、2 cm、3 cm、4 cm、5 cm的藓结皮斑块内土生对齿藓的干燥速率、渗透调节物质、丙二醛和光合色素含量等的变化,以期揭示干扰后生物结皮退化的生物学机理。结果表明(1)除单株外,干燥速率随斑块面积减小而增加,直径1 cm斑块内藓的干燥速率是直径5 cm的2倍。(2)反复干燥-复水25天后,直径小于5 cm的斑块内藓的可溶性糖、可溶性蛋白和叶绿素含量低于直径5 cm斑块内藓的含量,丙二醛含量随斑块面积变化无明显规律。(3)干燥速率与斑块面积、可溶性糖、可溶性蛋白及叶绿素含量均呈极显著负相关。以上结果表明,藓结皮斑块面积通过影响斑块内藓类植物干燥速率进而影响其渗透调节和光合作用能力。藓结皮斑块面积减小,藓类植物干燥速率增大,生理活性降低,是藓结皮斑块破碎诱发其退化的原因。研究从藓类植物生理的角度,阐明了干扰后藓类植物衰亡的生理学原因,为生物结皮的保护和管理提供了科学依据。  相似文献   

20.
Mosses, covering about 23,000 species of all land plants in the world, have been widely used as an indicator of heavy metal pollution in many studies. A crucial part in these researches is to regularize the adsorption capacities of different moss species obtained from different regions to objectively compare the pollution levels. In this study, we have first analyzed the lead adsorption capacities of six different moss species by means of using column filled with Amberlite XAD-2000 resin method. The adsorption capacities of the studied six mosses are found in descending order as Eurhynchium striatum, Hypnum cupressiforme, Pleurozium schreberi, Eurhynchium striatulum, Homalothecium sericeum and Thuidium tamariscinum. Then, we have regularized the Pb adsorption levels for the moss species obtained from different regions along one of the important coast highway in Turkey, namely Sarp-Samsun highway, with respect to the determined adsorption capacities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号