首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
Arnold  M. L.  Shaw  D. D. 《Chromosoma》1985,93(2):183-190
C-band variation between the Caledia taxa is extensive with numerous large interstitial and telomeric blocks of heterochromatin being present in the South-east Australian and Moreton taxa while the Torresian types possess small centromeric or telomeric C-bands. In situ hybridization using 3H-cRNA from a 168 bp (base pairs) highly repeated sequence, originally isolated from the South-east Australian taxon, defined further variation between the C. captiva taxa. This sequence family is present in each of the interstitial and telomeric constitutive heterochromatic blocks in the South-east Australian and Moreton taxa. However, it is represented in only a fraction of the heterochromatic regions, defined by C-banding, within the three Torresian types. A second, unrelated 144 bp sequence family, originally isolated from the Daintree taxon, is restricted to the procentric blocks of heterochromatin of chromosomes 2–7, 9 and 10 in the Daintree taxon. This sequence is A-T rich and possesses a region of dyad symmetry. Quantitative measurements for the two sequence families revealed a wide range of copy numbers between the C. captiva taxa. The 168 bp family has approximately 150,000, 35,000 and 4,000 copies, respectively, in the South-east Australian/ Moreton, Torresian and Daintree genomes. There are 2,000,000 and 100,000 copies of the 144 bp sequence in the Daintree and Papuan Torresian taxa, respectively. The distributional, quantitative and sequence characteristics of these repeat families imply that past amplification or introgression has played a major role in the evolution of these sequences. There is an overall negative correlation between the quantity of the 168 bp sequence and the levels of reproductive isolation and genie divergence between the various taxa. It is possible that some of the reduction in the viability of the hybrid individuals is due to the quantitative changes in these sequences. Moreover, the quantitative and qualitative characteristics of highly repeated DNA families may play a role in the modulation of such essential cellular functions as cell cycle duration, nuclear organization and gene expression.  相似文献   

2.
The restriction enzyme TaqI digests 0.2% of the genomic DNA from the grasshopper Caledia captiva to a family of sequences 168 bp in length (length of consensus sequence). The sequence variation of this "Taq family" of repeat units was examined among four races from C. captiva to assay the pattern of evolution within this highly repeated DNA. The Taq-family repeats are located in C-banded heterochromatin on at least one member of each homologous pair of chromosomes; the locations range from centromeric to telomeric. Thirty-nine cloned repeats isolated from two population 1A individuals along with 11 clones from seven populations taken from three of the races demonstrated sequence variation at 72 positions. Pairwise comparisons of the cloned repeats, both within an individual and between different races, indicate that levels of intraspecific divergence, as measured by reproductive incompatibility, do not correlate with sequence divergence among the 168-bp repeats. A number of subsequences within the repeat remain unchanged among all 50 clones; the longest of these is 18 bp. That the same 18-bp subsequence is present in all clones examined is a finding that departs significantly (P less than 0.01) from what would be expected to occur at random. Two other cloned repeats, from a reproductively isolated race of C. captiva, have sequences that show 56% identity with this 18-bp conserved region. An analysis showed that the frequency of occurrence of an RsaI recognition site within the 168- bp repeat in the entire Taq family agreed with that found in the cloned sequences. These data, along with a partial sequence for the entire Taq family obtained by sequencing uncloned repeats, suggest that the consensus sequence from the cloned copies is representative of this highly repeated family and is not a biased sample resulting from the cloning procedure. The 18-bp conserved sequence is part of a 42-bp sequence that possesses dyad symmetry typical of protein-binding sites. We speculate that this may be significant in the evolution of the Taq family of sequences.   相似文献   

3.
An analysis of the relative viabilities of recombinant and nonrecombinant chromosomes among the surviving embryos from back-crosses involving the Moreton (M) and Torresian (T) taxa has revealed that these embryos do not contain a representative sample of gametes derived from the F1 hybrid parent. The significant deviations in the hybrid gametic population arise entirely from intrachromosomal effects with no evidence of any between-chromosome interactions. This is interpreted as clear evidence to show that recombinational repatterning within heterozygous bivalents in the F1 parent is a significant factor in inducing the observed deviant segregation ratios. Furthermore, by using a population which is chromosomally equivalent to the Torresian but genically similar to the Moreton, it has been shown that over 46% of the F2 embryonic breakdown arises solely from the effects of chromosomal heterozygosity upon recombination repatterning among (Moreton × Torresian) F1 hybrids. From these data it is proposed that each chromosome is internally coadapted in the sense that it contains balanced blocks of cis-acting acting loci which can be disrupted by recombinational change. Disruption of the linear association of the genes on structurally different chromosomes by recombination repatterning results in novel intrachromosomal associations which may be functionally inadequate and so lead to arrested embryonic development. It is speculated that an important factor in arresting development may involve interactions between the novel recombinant chromosomes of the gamete and maternal factors laid down in the egg during oogenesis which are responsible for the sequential activation of the genomes of the progeny during development. Thus coadaptation is interpreted in terms of the functional intergration of a chromosome with the products of the genome of the previous generation. The assessment of the relative viabilities of recombinant and nonrecombinant chromosomes has shown that the Torresian nonrecombinant chromosomes possess the highest viabilities in the sequence TN>MNTR = MR where N and R represent nonrecombinant and recombinant classes. This sequence is relevant to the structure of the hybrid zone between the Torresian and Moreton taxa and explains both its asymmetry and the basis of the observed introgression of Torresian chromosomes into the Moreton taxon and the absence of the reverse movement.  相似文献   

4.
Chris Moran 《Chromosoma》1981,81(4):579-591
The Moreton and Torresian taxa of Caledia captiva are distinguished by multiple chromosomal differences involving a series of pericentric rearrangements together with differences in heterochromatin content. The role of these differences, in terms of their capacity to produce a postmating isolating mechanism between the two taxa was tested by an examination of male meiosis in F1 hybrids and in field collected backcross derivatives. Multiply heterozygous F1 hybrids, whether field collected or laboratory synthesised, displayed a low, but variable level of meiotic anomalies, principally in the form of univalent formation failure and the production of multiple associations as a result of intragenomic pairing. There was considerable heterogeneity between individuals and crosses in the frequency of such failure. None of the chromosomal differences between the taxa were implicated in the occurrence of univalent formation or the production of multiple association which implies that genotypic imbalance, rather than structural heterozygosity, is responsible for the observed anomalies of male meiosis in the hybrids. The chromosome differences between the taxa are therefore not considered to be involved in postmating isolation between them and hence cannot have played a direct role in their cladogenesis.  相似文献   

5.
D. J. Coates  D. Smith 《Chromosoma》1984,90(5):338-348
The spatial distribution of chromosomes has been analysed in radial metaphase neuroblast cells in F1 hybrid embryos generated by crossing individuals of the Moreton and Torresian (TT) chromosomal taxa of the grasshopper Caledia captiva. The Moreton individuals were of two kinds depending on whether they carried an acrocentric X (MAX) or a metacentric X (MMX). No significant associations were detected between any pair of homologous chromosomes in either male or female (MAX x TT) and (MMX x TT) F1 hybrids. This result was supported by data which showed that the mean separation between homologues is greater, although not significantly so, than the mean separation between non-homologous chromosomes within the two Moreton genomes. Indeed, in a number of cases, genome separation was clearly observed in radial metaphase preparations from these F1 hybrids. By comparison the analysis of pairwise associations between non-homologous chromosomes within the MMX and MAX Moreton genomes revealed a number of significant associations and dissociations which strongly suggests that at least some chromosomes in these genomes are organised non-randomly at metaphase. Of particular interest was the highly significant X-5 association in the MMX genome since in a previous study X-5 rearrangements were found to occur repeatedly among different backcross progeny involving Moreton x Torresian F1 hybrids. Additionally a comparison of the organisation of chromosomes in the MAX and MMX genomes, which differ primarily by the type of X chromosome, revealed that in a number of cases pairs of chromosomes are arranged very differently with respect to each other. The distribution of chromosomes on the hollow spindle was also analysed to investigate whether a specific spatial ordering of chromosomes exists within these Moreton genomes based on the association of pairs of short arms and pairs of long arms of most similar length (the Bennett model). The twelve chromosomes in both genomes were uniquely ordered in a single chain. However, because of computing limitations, only the ordered arrangement of chromosomes 1–10 was investigated. An analysis of 48 cells in the MMX and 38 cells in the MAX genomes showed that the predicted order in the ten chromosome sub-set in each genome did not rank in the top 20% of the 181,440 possible orders. This suggests that, although there is a good evidence that some non-homologous chromosomes may be associated non-randomly at metaphase in these genomes, they do not appear to show a specific, ordered arrangement as predicted by the Bennett model. The significance of the observed non-random organisation of chromosomes in the MMX and MAX genomes is discussed in relation to the generation of novel chromosome rearrangements in Moreton x Torresian F1 hybrids and the evolution of the Moreton and Torresian genomes.  相似文献   

6.
Summary In this paper is reported an example of extensive developmental changes in the isoenzymes controlling a biochemical pathway: more than half of the glycolytic enzymes of the grasshopper,Caledia captiva differ in electrophoretic phenotype between embryonic and adult stages. A similar pattern of changes is found in each of the taxa ofC. captiva, which is actually a species complex. The present example of developmental variation differs from that described for glycolytic enzymes in vertebrates in two main points. Firstly, the changes between the phenotypes of the embryos and adults are co-incident in time, occurring near hatching. Secondly, in contrast to vertebrates where embryospecific isoenzymes are rare, there exist inC. captiva isoenzymes of trehalase, glucosephosphate isomerase, aldolase, pyruvate kinase, lactate dehydrogenase and 6-phosphogluconate dehydrogenase which are found in the embryo but not in the adult. Some of the variable enzymes also exhibit tissue specificity in the adult. The existence of the changes, whatever their basis, shows that the theory that the expression of housekeeping genes is developmentally invariant is not generally correct.  相似文献   

7.
Evidence for an association between chromosomal form and development time in the grasshopper Caledia captiva (F.) was obtained through comparison of two geographic taxa and analysis of a complex latitudinal cline within one of the taxa. Northern populations of the Moreton taxon possess a metacentric genome and are slow-developing. In contrast, the Torresian taxon, distributed throughout northern, coastal Australia, a region of pronounced seasonality in rainfall, and southern populations of the Moreton taxon, which inhabit a region of pronounced seasonality in temperature, Soth have an acrocentric genome and are fast-developing. The convergence of chromosomal form and development time between Torresian and southern Moreton populations appears to be driven by convergence in life history. Seasonality limits grasshoppers to one generation per year and favours fast development. The transition between relatively acrocentric southern Moreton populations and relatively metacentric northern Moreton populations is gradual but not monotonic. Instead, a shift to a bivoltine life history in the middle of the transect occurs and is associated with shifts in both development time and chromosomal form. These results imply an adaptive role for chromosomal form, although the causative link between chromosomal variation and variation in development time remains to be established.  相似文献   

8.
Comparative fluorescence studies on the chromosome of ten species of acridid grasshoppers, with varying amounts and locations of C-band positive heterochromatin, indicate that the only regions to fluoresce differentially are those that C-band. Within a given species there is a marked tendency for groups of chromosomes to accumulate heterochromatin with similar fluorescence behaviour at similar sites. This applies to all three major categories of heterochromatin — centric, interstitial and telomeric. Different sites within the same complement, however, tend to have different fluorescence properties. In particular, centric C-bands within a given species are regularly distinguishable in their behaviour from telomeric C-bands. Different species, on the other hand, may show distinct forms of differential fluorescence at equilocal sites. These varying patterns of heterochromatin heterogeneity, both within and between species, indicate that whatever determines the differential response to fluorochromes has tended to operate both on an equilocal basis and in a concerted fashion. This is reinforced by the fact that structural rearrangements that lead to the relocation of centric C-bands, either within or between species, may also be accompanied by a change in fluorescence behaviour.We dedicate this paper, with affection, to Professor Hans Bauer on the occasion of his 80th birthday, and in appreciation of his singular contribution to the study of chromosomes  相似文献   

9.
In a temperate zone population of the grasshopper Caledia captiva (Fabnerus) (Orthoptera Acrididae), facultative embryonic diapause provided the basis for a number of aspects of life cycle flexibility Most offspring produced during the summer entered diapause, destined to overwinter as embryos and hatch in the spring, but a small percentage developed directly to hatching, overwintered as nymphs and reproduced in the spring The two different developmental pathways often occurred among the offspring of the same mother, and could represent a bet-hedging adaptation Offspring of the small overwintering generation were influenced by a maternal effect which greatly diminished their likelihood of entering diapause This is an adaptation to prevent an inappropriate developmental delay that would negate the fitness advantage of an extra generation Offspring produced in the autumn failed to develop to the stage at which diapause intervenes before winter and overwintered at a pre-diapause stage They did not enter diapause when development resumed in the spring Facultative diapause in this case also prevented an inappropriate developmental delay in the spring, and provided females with the option of reproducing toward the end of the growing season Life cycle flexibility appears to have evolved to exploit a climate with a short growing season but mild winter  相似文献   

10.
A hybrid zone between the Moreton and Torresian taxa of the grasshopper Caledia captiva in S.E. Queensland has been characterised in terms of allozyme and chromosome variation within the same individuals. — On chromosomal criteria (pericentric rearrangements), the zone is asymmetrical with evidence of high levels of introgression of Torresian chromosomes into the Moreton taxon. This is apparent from the analysis of two independent transects across the hybrid zone. Major changes in chromosomal frequency occur over distances of less than 0.5 km. and the level of introgression differs between the two transects, with much higher levels in the northern Moreton populations, characterised by an acrocentric X-chromosome, when compared with the southern metacentric-X Moreton populations. Chromosome analysis of samples taken from the same transect over two years has revealed no major changes in the structure of the zone. Moreover, a Moreton population located only 0.5 km. from the null point was found to be stable over 6 generations with evidence for a new balanced genome having originated following the differential incorportation of Torresian chromosomes. — Contrary to the chromosomal situation, the same hybrid zone was found to be symmetrical with respect to allozyme variation with evidence of movement of diagnostic alleles in both directions across the zone. The alleles are independent and not tightly linked to any of the pericentric rearrangements. Thus these 5 alleles are acting as markers of the background genome and reveal the relatively free movement of genes which are located outside the pericentric rearrangements. — It is proposed that the hybrid zone in Caledia captiva is unstable and is moving slowly in a westerly direction into the Torresian territory. This is due to the ability of the Moreton taxon to incorporate more readily into its genome those Torresian chromosomes or chromosome segments which increase the fitness of the Moreton taxon. On chromosomal criteria, the Torresian taxon does not share the same capacity. — It is suggested that, so long as the two taxa retain their ability to hybridise with subsequent asymmetrical introgression, the zone will continue to move westwards and eventually lead to the selective incorporation of the Torresian genome into the Moreton taxon. This will result in a polymorphic situation with clinal variation in chromosomal frequencies. The structure of the zone is dependent upon a fine balance between genomic reorganisation in recombinant genotypes and the relative dispersal capacities of the two hybridising taxa.  相似文献   

11.
This paper describes the development of the synaptonemal complex in three species of grasshopper: Chorthippus bicolor, Oedipoda coerulescens and Paracinema bicolor. In all three cases the development seems similar. A typical synaptonemal complex is observed during pachytene. Diplotene bivalents show a low density material associated with the chromatin and during first metaphase the beginnings of polycomplex formations are seen. Well organized polycomplexes can be recognized from first anaphase to early spermatids. The elements of the polycomplexes, as well as elements of the synaptonemal complex, show themselves to be positive after preferential staining for ribonucleoproteins. Polycomplexes observed after spreading and positive staining present similar characteristics to those observed after sectioning.This paper is dedicated to the memory of W. Bernhard for his contribution to the knowledge of the cell nucleus  相似文献   

12.
Synaptonemal complexes were studied in Gerbillus campestris, Meriones libycus, M. shawi, M. crassus, and in two hybrids M. shawi x M. libycus (Gerbillidae, Rodentia). In both the pure species and hybrids, there was no pairing of X and Y chromosomes, as was previously observed in Psammomys obesus and other Gerbillidae species with gonosome-autosome translocations. A pair of autosomes was also located in proximity to the sex chromosomes in pachytene and showed unusual meiotic behavior with no, incomplete, or much delayed pairing. This chromosome pair, composed of late replicating heterochromatin, exists in most Gerbillidae species and is constant in number, but variable in size across the species. Both meiotic and mitotic characteristics indicate that this pair may correspond to a new type of chromosome which is different from B chromosomes. We do not know if there is a relationship between the presence of this chromosome and the unusual behavior of the sex chromosomes. In Gerbillidae species, the lack of pairing of both sex and heterochromatic chromosomes obviously does not prevent their correct meiotic segregation.  相似文献   

13.
The Hoechst 33258 banding pattern of the mitotic chromosomes of several laboratory and natural populations of the sibling species A. gambiae and A. arabiensis has been analyzed. A clear intraspecific polymorphism of sex chromosome heterochromatin has been observed. Nevertheless in each species heterochromatic variations fall within a characteristic species-specific pattern. Moreover, while laboratory populations tend to be monomorphic for a given heterochromatic variant, natural populations exhibit a high degree of intrapopulation polymorphism. The possible role of sex chromosome heterochromatin in controlling fertility and mating behaviour of Anopheles mosquitoes is discussed.  相似文献   

14.
V Baimai  A Traipakvasin 《Génome》1987,29(3):401-404
Cytological examination of F1 larval mitotic chromosomes from a total of 126 families of Anopheles dirus species B from southern Thailand populations has revealed a pronounced quantitative variation of constitutive heterochromatin in the two sex chromosomes. Five types of X chromosomes and four types of Y chromosomes have been identified in this study. Such gross variation in sex chromosomes is most likely due to a gradual acquisition of extra heterochromatin.  相似文献   

15.
我国蝗虫二新种记述 (直翅目:蝗总科)   总被引:2,自引:0,他引:2  
郑哲民 《昆虫学报》2000,43(2):184-187
报道了采自安徽及内蒙古地区的蝗虫二新种:黑翅负蝗Atractomorpha nigripennis sp.nov.及黄足小车蝗Oedaleus cnecososodius sp.nov.。模式标本保存于陕西师范大学动物研究所。  相似文献   

16.
A large amount of heterochromatin is observed in two species of the genus Gerbillus, G. nigeriae and G. hesperinus. The C-band material represents about one-half of the total karyotype length in the former species, and about one-third in the latter. Several banding techniques and various 5-bromodeoxyuridine (BrdU) treatments were used to characterise these heterochromatic segments. After applying the R-banding technique, three different staining responses of the heterochromatin can be distinguished. In G. nigeriae, strongly stained segments (R-band positive) appear in most chromosomes and, in particular, constitute the short arms of all the larger chromosomes. Palely staining heterochromatic segments (R-band negative) are less abundant in G. nigeriae but predominate in G. hesperinus. In addition, in both species an intermediate staining of heterochromatin is observed near the centromere or in the heterochromatic short arms of some acrocentric and small submetacentric chromosomes. Very short BrdU treatment during the end of the last cell cycle results in asymmetrical staining of chromatids in heterochromatic segments after applying the acridine orange or FPG (fluorescence plus Giemsa) technique. The alternating location of strongly staining segments in one or the other chromatid simulates sister chromatid exchanges (pseudo-SCE). This pattern persists after longer BrdU treatment during different stages of the last cell cycle and is independent of the R-staining properties of the heterochromatin. The lateral asymmetric appearance of the large heterochromatic segments in Gerbillus is interpreted as reflecting an uneven distribution of adenine and thymidine between the two strands of DNA.  相似文献   

17.
In metazoan cells, the heterochromatin is generally localized at the nuclear periphery, whereas active genes are preferentially found in the nuclear interior. In the present paper, we review current evidence showing that components of the nuclear lamina interact directly with heterochromatin, which implicates the nuclear lamina in a mechanism of specific gene retention at the nuclear periphery and release to the nuclear interior upon gene activation. We also discuss recent data showing that mutations in lamin proteins affect gene positioning and expression, providing a potential mechanism for how these mutations lead to tissue-specific diseases.  相似文献   

18.
本记述采自福建武夷山地区蝗虫二新种,即曲缘卵翅蝗Caryanaa curvbnargina sp.n.亚武夷山雏蝗Chorthip pus wuyishanensis sp.n.  相似文献   

19.
Quantitatively evaluated C-banding karyograms are presented forAllium carinatum, A. carinatum ssp.pulchellum, andA. flavum of the sectionCodonoprasum Reichenb. Accurate measurements revealed that constitutive heterochromatin (C-bands) is probably additional chromosomal material. The distribution of the C-heterochromatin follows the principle of the equilocal heterochromatin-distribution byHeitz (1933). Furthermore, the pattern shows a relationship to the relative arm-length of the chromosomes in the karyotype. Fluorochrome banding revealed various heterochromatintypes. The C-band patterns ofAllium cupani (sect.Scorodon Koch) andA. vineale (sect.Allium), which are also rich in heterochromatin, are described.  相似文献   

20.
傅鹏  郑哲民 《昆虫学报》2002,45(2):16-19
记述斑腿蝗科Catantopidae 卵翅蝗属Caryanda Stal ,1878一新种雪峰山卵翅蝗C. xuefengshanensis sp.nov. 和蹦蝗属Sinopodisma Chang,1940 一新种大围山蹦蝗S. daweishana sp. nov.。前者标本采自湖南省黄桑自然保护区(绥宁县);后者标本采自湖南省大围山国家森林公园(浏阳市)。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号