首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Sildenafil citrate (Viagra) is the most widely used pharmacological drug for treating erectile dysfunction in men. It has potent cardioprotective effects against ischemia-reperfusion injury via nitric oxide and opening of mitochondrial ATP-sensitive K(+) channels. We further investigated the role of protein kinase C (PKC)-dependent signaling pathway in sildenafil-induced cardioprotection. Rabbits were treated (orally) with sildenafil citrate (1.4 mg/kg) 30 min before index ischemia for 30 min and reperfusion for 3 h. The PKC inhibitor chelerythrine (5 mg/kg i.v.) was given 5 min before sildenafil. Infarct size (% of risk area) reduced from 33.65 +/- 2.17 in the vehicle (saline) group to 15.07 +/- 0.63 in sildenafil-treated groups, a 45% reduction compared with vehicle (mean +/- SE, P < 0.05). Chelerythrine abolished sildenafil-induced protection, as demonstrated by increase in infarct size to 31.14 +/- 2.4 (P < 0.05). Chelerythrine alone had an infarct size of 33.5 +/- 2.5, which was not significantly different compared with DMSO-treated group (36.8 +/- 1.7, P > 0.05). Western blot analysis demonstrated translocation of PKC-alpha, -, and -delta isoforms from cytosol to membrane after treatment with sildenafil. However, no change in the PKC-beta and -epsilon isoforms was observed. These data provide direct evidence of an essential role of PKC, and potentially PKC-alpha, -, and -delta, in sildenafil-induced cardioprotection in the rabbit heart.  相似文献   

3.
We had previously shown that the transmembrane glycoprotein M6a, a member of the proteolipid protein (PLP) family, regulates neurite/filopodium outgrowth, hence, M6a might be involved in neuronal remodeling and differentiation. In this work we focused on M6, the only PLP family member present in Drosophila, and ortholog to M6a. Unexpectedly, we found that decreased expression of M6 leads to female sterility. M6 is expressed in the membrane of the follicular epithelium in ovarioles throughout oogenesis. Phenotypes triggered by M6 downregulation in hypomorphic mutants included egg collapse and egg permeability, thus suggesting M6 involvement in eggshell biosynthesis. In addition, RNAi-mediated M6 knockdown targeted specifically to follicle cells induced an arrest of egg chamber development, revealing that M6 is essential in oogenesis. Interestingly, M6-associated phenotypes evidenced abnormal changes of the follicle cell shape and disrupted follicular epithelium in mid- and late-stage egg chambers. Therefore, we propose that M6 plays a role in follicular epithelium maintenance involving membrane cell remodeling during oogenesis in Drosophila.  相似文献   

4.
5.
The gene encoding the regulatory subunit (RKA1) of the cAMP-dependent protein kinase (PKA) of Yarrowia lipolytica was isolated to analyze the role of the PKA pathway in the dimorphic transition of the fungus. The gene encoded a protein of 397 amino acids that exhibits significant homology to fungal PKA regulatory subunits. Attempts to disrupt the gene by double homologous recombination, or the Pop-in Pop-out technique, were unsuccessful. The gene could be mutated only in merodiploids constructed with an autonomous replicating plasmid. Loss of the plasmid occurred with growth under nonselective conditions in the whole population of merodiploids carrying the mutation in the plasmid, but in merodiploids with the mutation at the chromosome, a resistant population prevailed. These data suggest that RKA1 is essential in Y. lipolytica. cAMP addition inhibited the dimorphic transition of the parental strain, but merodiploids carrying several copies of RKA1 were more resistant to cAMP. These results, and the observation that RKA1 was upregulated in mycelial cells, indicate that an active PKA pathway promotes yeast-like growth and opposes mycelial development. This behavior is in contrast to that of Candida albicans, where the PKA pathway favors hyphal growth.  相似文献   

6.
The role of the L-arginine-nitric oxide metabolic pathway was explored for interleukin-2-induced proliferation in the cytotoxic T lymphocyte clone CTLL-2. Specific inhibition of nitric oxide synthase significantly diminished, in a concentration-dependent manner, (3)H-thymidine uptake of CTLL-2 cells in response to different concentrations of interleukin 2. Withdrawal of L-arginine from culture medium resulted as potent as the higher inhibition obtained when blocking nitric oxide synthase with L-arginine analogues. Furthermore, intermedial concentrations of Larginine and exogenous nitric oxide donors were found for achieving optimal IL2-induced proliferation of CTLL-2. These findings prompted us to suggest that intra- and/or inter-cellular nitric oxide signalling may contribute to the modulation of the IL2 mitogenic effect upon cytotoxic T lymphocytes.  相似文献   

7.
8.
Interleukin-32 (IL-32) is an inflammatory cytokine produced mainly by T, natural killer, and epithelial cells. Previous studies on IL-32 have primarily investigated its proinflammatory properties. The IL-32 also has been described as an activator of the p38 mitogen-activated protein kinase (MAPK) and NF-κB, and induces several cytokines. In this study, we hypothesized that the inflammatory regulators NF-κB, MAP kinase, STAT1, and STAT3 are associated with the expression of the IL-32 protein in human calcified aortic valve cells. This study comprised aortic valve sclerotic patients and control group patients without calcified aortic valve. Increased IL-32 expression in calcified aortic valvular tissue was shown by immunohistochemical staining and western blotting. There was an increase in NF-κB p65 level, p-ERK, p-JNK, and p-p38 MAPK activation underlying IL-32 expression in the study. The level of p-STAT3 but not p-STAT1 was found to be increased in calcified aortic valve tissue. In cultured primary human aortic valve interstitial cells, inhibition of NF-κB or MAPK kinase pathways results in a decrease of IL-32 expression. Treatment of recombinant IL-32 induced the levels of TNF-α, IL-6, IL-1β, and IL-8. Our findings demonstrate that IL-32 may be an important pro-inflammatory molecule involved in calcific aortic valve disease.  相似文献   

9.
10.
RNAi knockdown was employed to study the function of p67, a lysosome-associated membrane protein (LAMP)-like type I transmembrane lysosomal glycoprotein in African trypanosomes. Conditional induction of p67 dsRNA resulted in specific approximately 90% reductions in de novo p67 synthesis in both mammalian bloodstream and procyclic insect-stage parasites. Bloodstream cell growth was severely retarded with extensive death after > 24 h of induction. Biosynthetic trafficking of residual p67, and of the soluble lysosomal protease trypanopain, were unimpaired. Endocytosis of tomato lectin, a surrogate receptor-mediated cargo, was only mildly impaired (approximately 20%), but proper lysosomal targeting was unaffected. p67 ablation had dramatic effects on lysosomal morphology with gross enlargement (four- to fivefold) and internal membrane profiles reminiscent of autophagic vacuoles. Ablation of p67 expression rendered bloodstream trypanosomes refractory to lysis by human trypanolytic factor (TLF), a lysosomally activated host innate immune mediator. Similar effects on lysosomal morphology and TLF sensitivity were also obtained by two pharmacological agents that neutralize lysosomal pH--chloroquine and bafilomycin A1. Surprisingly, however, lysosomal pH was not affected in ablated cells suggesting that other physiological alterations must account for increased resistance to TLF. These results indicate p67 plays an essential role in maintenance of normal lysosomal structure and physiology in bloodstream-stage African trypanosomes.  相似文献   

11.
12.
The specific role of endogenous Bmp2 gene in chondrocytes and in osteoblasts in fracture healing was investigated by generation and analysis of chondrocyte- and osteoblast-specific Bmp2 conditional knockout (cKO) mice. The unilateral open transverse tibial fractures were created in these Bmp2 cKO mice. Bone fracture callus samples were collected and analyzed by X-ray, micro-CT, histology analyses, biomechanical testing and gene expression assays. The results demonstrated that the lack of Bmp2 expression in chondrocytes leads to a prolonged cartilage callus formation and a delayed osteogenesis initiation and progression into mineralization phase with lower biomechanical properties. In contrast, when the Bmp2 gene was deleted in osteoblasts, the mice showed no significant difference in the fracture healing process compared to control mice. These findings suggest that endogenous BMP2 expression in chondrocytes may play an essential role in cartilage callus maturation at an early stage of fracture healing. Our studies may provide important information for clinical application of BMP2.  相似文献   

13.
Maspin (Mp) is a member of the serpin family with inhibitory functions against cell migration, metastasis and angiogenesis. To identify its role in embryonic development in vivo, we generated maspin knockout mice by gene targeting. In this study, we showed that homozygous loss of maspin expression was lethal at the peri-implantation stage. Maspin was specifically expressed in the visceral endoderm after implantation; deletion of maspin interfered with the formation of the endodermal cell layer, thereby disrupting the morphogenesis of the epiblast. In vitro, the ICM of the Mp(-/-) blastocysts failed to grow out appropriately. Data from embryoid body formation studies indicated that the Mp(-/-) EBs had a disorganized, endodermal cell mass and lacked a basement membrane layer. We showed that the embryonic ectoderm lineage was lost in the Mp(-/-) EBs, compared with that of the Mp(+/+) EBs. Re-expression of maspin partially rescued the defects observed in the Mp(-/-) EBs, as evidenced by the appearance of ectoderm cells and a layer of endoderm cells surrounding the ectoderm. In addition, a maspin antibody specifically blocked normal EB formation, indicating that maspin controls the process through a cell surface event. Furthermore, we showed that maspin directly increased endodermal cell adhesion to laminin matrix but not to fibronectin. Mp(+/-) endodermal cells grew significantly slower than Mp(+/+) endodermal cells on laminin substrate. We conclude that deletion of maspin affects VE function by reducing cell proliferation and adhesion, thereby controlling early embryonic development.  相似文献   

14.
15.
Survivin was initially described as an inhibitor of apoptosis and attracted growing attention as one of the most tumor-specific genes in the human genome and a promising target for cancer therapy. Lately, it has been shown that survivin is a multifunctional protein that takes part in several crucial cell processes. At first, it was supposed that survivin functions only as a homodimer, but now data indicate that many processes require monomeric survivin. Moreover, recent studies reveal a special mechanism regulating the balance between monomeric and dimeric forms of the protein. In this paper we studied the mutant form of survivin that was unable to dimerize and investigated its role in apoptosis. We showed that survivin monomer interacts with Smac/DIABLO and X-linked inhibitor of apoptosis protein (XIAP) both in vitro and in vivo. Due to this feature, it protects cells from caspase-dependent apoptosis even more efficiently than the wild-type survivin. We also identified that mutant monomeric survivin prevents apoptosis-inducing factor release from the mitochondrial intermembrane space, protecting human fibrosarcoma HT1080 cells from caspase-independent apoptosis. On the other hand, our results indicate that only wild-type survivin, but not the monomer mutant form, enhances tubulin stability in cells. These findings suggest that survivin partly performs its functions as a monomer and partly as a dimer. The mechanism of dimer-monomer balance regulation may also work as a "switcher" between survivin functions and thereby explain remarkable functional diversities of this protein.  相似文献   

16.
AMPK, a master metabolic switch, mediates the observed increase of glucose uptake in locomotory muscle of mammals during exercise. AMPK is activated by changes in the intracellular AMP:ATP ratio when ATP consumption is stimulated by contractile activity but also by AICAR and metformin, compounds that increase glucose transport in mammalian muscle cells. However, the possible role of AMPK in the regulation of glucose metabolism in skeletal muscle has not been investigated in other vertebrates, including fish. In this study, we investigated the effects of AMPK activators on glucose uptake, AMPK activity, cell surface levels of trout GLUT4 and expression of GLUT1 and GLUT4 as well as the expression of enzymes regulating glucose disposal and PGC1α in trout myotubes derived from a primary muscle cell culture. We show that AICAR and metformin significantly stimulated glucose uptake (1.6 and 1.3 fold, respectively) and that Compound C completely abrogated the stimulatory effects of the AMPK activators on glucose uptake. The combination of insulin and AMPK activators did not result in additive nor synergistic effects on glucose uptake. Moreover, exposure of trout myotubes to AICAR and metformin resulted in an increase in AMPK activity (3.8 and 3 fold, respectively). We also provide evidence suggesting that stimulation of glucose uptake by AMPK activators in trout myotubes may take place, at least in part, by increasing the cell surface and mRNA levels of trout GLUT4. Finally, AICAR increased the mRNA levels of genes involved in glucose disposal (hexokinase, 6-phosphofructokinase, pyruvate kinase and citrate synthase) and mitochondrial biogenesis (PGC-1α) and did not affect glycogen content or glycogen synthase mRNA levels in trout myotubes. Therefore, we provide evidence, for the first time in non-mammalian vertebrates, suggesting a potentially important role of AMPK in stimulating glucose uptake and utilization in the skeletal muscle of fish.  相似文献   

17.
Specifically interleukin-2 (IL-2)-dependent CTLL-2 cells were incubated in short term culture in the presence of IL-2 together with bombesin and two analogues, [Lys3]bombesin and [Tyr4]bombesin in different concentrations. Cell proliferation, determined by [3H]thymidine incorporation was significantly inhibited by 35.6 +/- 5%, 39.0 +/- 5.6% and 57.0 +/- 11% (mean +/- S.E.M. of 3 independent experiments). A typically U-shaped dose-response relationship was observed, showing a maximum effect between 10(-12) and 10(-10) M. Our data support the hypothesis that this effect is mediated by a specific receptor for bombesin and closely related peptides on CTLL-2 cells. As IL-2 plays a critical role in the clonal expansion of activated lymphocytes, antagonism of the effect of IL-2 is of high biological significance.  相似文献   

18.
The Dkk family of secreted cysteine-rich proteins regulates Wnt/beta-catenin signaling by interacting with the Wnt co-receptor Lrp5/6. Here, we show that Dkk2-mediated repression of the Wnt/beta-catenin pathway is essential to promote differentiation of the corneal epithelial progenitor cells into a non-keratinizing stratified epithelium. Complete transformation of the corneal epithelium into a stratified epithelium that expresses epidermal-specific differentiation markers and develops appendages such as hair follicles is achieved in the absence of the Dkk2 gene function. We show that Dkk2 is a key regulator of the corneal versus epidermal fate of the ocular surface epithelium.  相似文献   

19.
The gene encoding a 40-kDa protein, previously studied as a substrate and inhibitor of the yeast cyclin-dependent protein kinase, Cdc28, has been cloned. The DNA sequence reveals that p40 is a highly charged protein of 32,187 Da with no significant homology to other proteins. Overexpression of the gene encoding p40, SIC1, produces cells with an elongated but morphology similar to that of cells with depleted levels of the CLB gene products, suggesting that p40 acts as an inhibitor of Cdc28-Clb complexes in vivo. A SIC1 deletion is viable and has highly increased frequencies of broken and lost chromosomes. The deletion strain segregates out many dead cells that are primarily arrested at the G2 checkpoint in an asymmetric fashion. Only daughters and young mothers display the lethal defect, while experienced mothers appear to grow normally. These results suggest that negative regulation of Cdc28 protein kinase activity by p40 is important for faithful segregation of chromosomes to daughter cells.  相似文献   

20.
Recent data from multiple organisms indicate that gamma-tubulin has essential, but incompletely defined, functions in addition to nucleating microtubule assembly. To investigate these functions, we examined the phenotype of mipAD159, a cold-sensitive allele of the gamma-tubulin gene of Aspergillus nidulans. Immunofluorescence microscopy of synchronized material revealed that at a restrictive temperature mipAD159 does not inhibit mitotic spindle formation. Anaphase A was inhibited in many nuclei, however, and after a slight delay in mitosis (approximately 6% of the cell cycle period), most nuclei reentered interphase without dividing. In vivo observations of chromosomes at a restrictive temperature revealed that mipAD159 caused a failure of the coordination of late mitotic events (anaphase A, anaphase B, and chromosomal disjunction) and nuclei reentered interphase quickly even though mitosis was not completed successfully. Time-lapse microscopy also revealed that transient mitotic spindle abnormalities, in particular bent spindles, were more prevalent in mipAD159 strains than in controls. In experiments in which microtubules were depolymerized with benomyl, mipAD159 nuclei exited mitosis significantly more quickly (as judged by chromosomal condensation) than nuclei in a control strain. These data reveal that gamma-tubulin has an essential role in the coordination of late mitotic events, and a microtubule-independent function in mitotic checkpoint control.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号