首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recently much attention has been focused on single nucleotide polymorphisms (SNPs) within fundamentally important genes, such as those involved in metabolism, cell growth regulation, and other disease-associated genes. Methodologies for discriminating different alleles need to be specific (robust detection of an altered sequence in the presence of wild-type DNA) and preferably, amenable to high throughput screening. We have combined the fluorogenic 5' nuclease polymerase chain reaction (TaqMan) and the mismatch amplification mutation assay (MAMA) to form a novel assay, TaqMAMA, that can quickly and specifically detect single base changes in genomic DNA. TaqMan chemistry utilizes fluorescence detection during PCR to precisely measure the starting template concentration, while the MAMA assay exploits mismatched bases between the PCR primers and the wild-type template to selectively amplify specific mutant or polymorphic sequences. By combining these assays, the amplification of the mutant DNA can be readily detected by fluorescence in a single PCR reaction in 2 hours. Using the human TK6 cell line and specific HPRT-mutant clones as a model system, we have optimized the TaqMAMA technique to discriminate between mutant and wild-type DNA. Here we demonstrate that appropriately designed MAMA primer pairs preferentially amplify mutant genomic DNA even in the presence of a 1,000-fold excess of wild-type DNA. The ability to selectively amplify DNAs with single nucleotide changes, or the specific amplification of a low copy number mutant DNA in a 1,000-fold excess of wild-type DNA, is certain to be a valuable technique for applications such as allelic discrimination, detection of single nucleotide polymorphisms or gene isoforms, and for assessing hotspot mutations in tumor-associated genes from biopsies contaminated with normal tissue.  相似文献   

2.
A quantitative RT-PCR assay has been developed that is able to measure the mRNA content of the major human CYPs (1A1, 1A2, 2A6, 2B6, 2C9, 2C19, 2D6, 2E1, 3A4, and 3A5). The technique is highly specific, reproducible, rapid, and sensitive enough to quantitate low and high abundant mRNAs. The PCR primers were selected to specifically match each CYP mRNA, to have a very close annealing temperature, and to render PCR products of similar sizes. The PCR conditions were designed to allow the simultaneous measurement of the various human liver CYPs in a single run. To achieve precise and reproducible quantitation of each cytochrome mRNA, a external standard (luciferase mRNA) is added to the probes to monitor the efficiency of the RT step. The degree of amplification is estimated using appropriate cDNA standards and quantitation of the amplified products by fluorescent measurement. This assay can be used to quantify the most relevant CYPs in human liver and cultured human hepatocytes. CYPs 3A4 and 2E1 were the most abundant mRNAs in human liver (2.5 and 1.7 x 10(8) molecules/microgram of total RNA respectively), whereas 1A1 and 2D6 were the least abundant isoforms (1.2 and 2.1 x 10(6) molecules/microgram of total RNA). A similar pattern was also found in short-term cultured human hepatocytes. This technique is also suitable for assessing CYP mRNA induction by xenobiotics. Cells exposed to 3-methylcholanthrene showed a characteristic increased expression of CYP1A2 and 1A1 mRNAs. Upon incubation with phenobarbital and rifampin (rifampicin), human hepatocytes increased CYP 2B6, 3A4, and 3A5 among others.  相似文献   

3.
The Cytochrome P450 (CYP) proteins are a family of membrane bound proteins that function as a major metabolizing enzyme in the human body. Quantification of CYP induction is critical in determining the disposition, safety and efficacy of drugs in humans. Described is a gel-free, high-throughput LC-MS approach to quantitate the CYP isoforms 1A2, 2B6, 3A4 and 3A5 by measuring isoform specific peptides released by enzymatic digestion of the hepatocyte incubations. The method uses synthetic stable isotope-labeled peptides as internal standards and allows both relative and absolute quantification to be performed from hepatic microsomal preparations. CYP protein determined by this LC-MS method correlated well with the mRNA and activity for induced levels of CYP1A2, CYP2B6 and CYP3A4. Interestingly, a small fold change was observed for the induction of 3A5 with phenobarbital. The results were reproducible with an average CV less then 10% for repeat analysis of the sample. This LC-MS method offers a robust assay for CYP protein quantitation for use in CYP induction assays.  相似文献   

4.
The cytochrome p450 (CYP) superfamily comprises enzymes that play an essential role in the transformation of medically relevant compounds. Accurate genotyping of polymorphisms in members of this family is drawing increasing interest because certain allelic variants may result in either loss of efficacy or toxic accumulation of therapeutic agents. Debrisoquine 4-hydroxylase, or CYP2D6, is among the most widely studied of the CYPs. The complexity of the CYP2D6 genomic region, including pseudogenes, gene deletions, and gene duplications, has offered numerous challenges to developing a genotyping strategy. We describe a comprehensive CYP2D6 genotyping strategy that employs both a PCR/Invader genotyping assay system and an Invader genomic copy number assay The Invader system is a homogeneous, isothermal, highly specific, and robust signal amplification system. Resultsfrom II CYP2D6 assays in an alle frequency study compare well to published allele frequency values for Caucasians. Further, Invader assays provided unambiguous genotyping determinations for 100% of the 171 samples that yielded a visible PCR product on an agarose gel. A copy number assay yielded only one equivocal result in 205 samples. We identified 17 single-copy individuals and 17 three-copy (or more) individuals.  相似文献   

5.
Members of the NBS-LRR gene family impart resistance to a wide variety of pathogens and are often found clustered within a plant genome. This clustering of homologous sequences can complicate PCR-based characterizations, especially the study of transgenes. We have developed allele-specific PCR and RT–PCR assays for the potato late blight resistance gene RB. Our assay utilizes two approaches toward primer design, allowing discrimination between the RB transgene and both the endogenous RB gene and numerous RB homeologs. First, a reverse primer was designed to take advantage of an indel present in the RB transgene but absent in rb susceptibility alleles, enhancing specificity for the transgene, though not fully discriminating against RB homeologs. Second, a forward primer was designed according to the principles of mismatch amplification mutation assay (MAMA) PCR, targeting SNPs introduced during the cloning of RB. Together, the indel reverse primer and the MAMA forward primer provide an assay that is highly specific for the RB transgene, being capable of distinguishing the transgene from all RB endogenous gene copies and from all RB paralogs in a diverse collection of wild and cultivated potato genotypes. These primers have been successfully multiplexed with primers of an internal control. The multiplexed assay is useful for both PCR and RT–PCR applications. Double MAMA-PCR, in which both PCR primers target separate transgene-specific SNPs, was also tested and shown to be equally specific for the RB transgene. We propose extending the use of MAMA for the characterization of resistance transgenes. Electronic supplementary material The online version of this article () contains supplementary material, which is available to authorized users.  相似文献   

6.
目的:建立人博卡病毒(HBoV)核酸特异、快速、敏感的TaqMan探针实时定量PCR检测方法,并对临床样本进行检测。方法:比对编码HBoV非结构蛋白NP-1的基因序列,选取其保守片段设计引物和探针,建立实时荧光定量PCR检测方法,并与传统PCR方法进行比较,然后分别对两者的灵敏性、特异性、稳定性及临床样本检验的适用性等进行评价。结果:所建立的实时定量PCR检测方法可用于HBoV的特异性检测;相对于传统PCR所达到的250拷贝/反应的检测灵敏度,实时定量PCR的检测灵敏度可高达10拷贝/反应,检测范围为109~101拷贝/反应,且具有良好的特异性和重复性;初步用于76份临床呼吸道标本检测,检出阳性5例,高于普通PCR方法(3/76)。结论:建立了HBoV TaqMan探针实时定量PCR检测方法,并可用于临床鼻咽拭子样本的检测,为开展HBoV流行病学监测及早期临床诊断提供了技术手段。  相似文献   

7.
目的:采用一种“双链探针”实时荧光PCR技术,提高HBV核酸检测灵敏度,并在同一反应管中实现代谢酶CYP2C19*2基因型检测。方法:采用双链探针与TaqMan探针同时检测不同浓度HBV血清样本,使用上海宏石SLAN 96实时荧光PCR仪进行核酸Ct值检测和结果统计分析;采用双链探针检测代谢酶CYP2C19*2不同基因型样本,使用上海宏石SLAN 96实时荧光PCR仪进行核酸Ct值检测和基因型确定。结果:不同浓度HBV血清样本检测,双链探针荧光本底低,检测灵敏度更高,与TaqMan探针检测结果相比,两者核酸检测Ct值存在显著性差异(P<0.05);双链探针检测36份样本的代谢酶CYP2C19*2基因型,检测结果与Sanger测序结果完全一致。结论:双链探针实时荧光PCR检测技术可完成目的基因的高灵敏核酸检测,也可实现基因型分析。  相似文献   

8.
A real time quantitative PCR assay has been developed for detecting minute virus of mice (MVM). This assay directly quantifies PCR product by monitoring the increase of fluorescence intensity emitted during enzymatic hydrolysis of an oligonucleotide probe labelled covalently with fluorescent reporting and quenching dyes via Taq polymerase 5'-->3' exonuclease activity. The quantity of MVM DNA molecules in the samples was determined using a known amount of MVM standard control DNA fragment cloned into a plasmid (pCR-MVM). We have demonstrated that MVM TaqMan PCR assay is approximately 1000-fold more sensitive than the microplate infectivity assay with the lowest detection limit of approximately one particle per reaction. The reliable detection range is within 100 to 10(9) molecules per reaction with high reproducibility. The intra assay variation is <2.5%, and the inter assays variation is <6.5% when samples contain >100 particles/assay. When we applied the TaqMan PCR to MVM clearance studies done by column chromatography or normal flow viral filtration, we found that the virus removal factors were similar to that of virus infectivity assay. It takes about a day to complete entire assay processes, thus, the TaqMan PCR assay is at least 10-fold faster than the infectivity assay. Therefore, we concluded that this fast, specific, sensitive, and robust assay could replace the infectivity assay for virus clearance evaluation.  相似文献   

9.
Komen JC  Wanders RJ 《FEBS letters》2006,580(16):3794-3798
Patients suffering from Refsum disease have a defect in the alpha-oxidation pathway which results in the accumulation of phytanic acid in plasma and tissues. Our previous studies have shown that phytanic acid is also a substrate for the omega-oxidation pathway. With the use of specific inhibitors we now show that members of the cytochrome P450 (CYP450) family 4 class are responsible for phytanic acid omega-hydroxylation. Incubations with microsomes containing human recombinant CYP450s (Supersomes) revealed that multiple CYP450 enzymes of the family 4 class are able to omega-hydroxylate phytanic acid with the following order of efficiency: CYP4F3A>CYP4F3B>CYP4F2>CYP4A11.  相似文献   

10.
A quantitative real-time TaqMan PCR assay for detection of human adenoviruses (HAdV) was developed using broadly reactive consensus primers and a TaqMan probe targeting a conserved region of the hexon gene. The TaqMan assay correctly identified 56 representative adenovirus prototype strains and field isolates from all six adenovirus species (A to F). Based on infectious units, the TaqMan assay was able to detect as few as 0.4 and 0.004 infectious units of adenovirus serotype 2 (AdV2) and AdV41, respectively, with results obtained in less than 90 min. Using genomic equivalents, the broadly reactive TaqMan assay was able to detect 5 copies of AdV40 (which had zero mismatches with the PCR primers and probe), 8 copies of AdV41, and 350 copies of AdV3 (which had the most mismatches [seven] of any adenovirus serotype tested). For specific detection and identification of F species serotypes AdV40 and AdV41, a second real-time PCR assay was developed using fluorescence resonance energy transfer (FRET) probes that target the adenovirus fiber gene. The FRET-based assay had a detection limit of 3 to 5 copies of AdV40 and AdV41 standard DNA and was able to distinguish between AdV40 and AdV41 based on melting curve analysis. Both the TaqMan and FRET PCR assays were quantitative over a wide range of virus titers. Application of these assays for detection of adenoviruses and type-specific identification of AdV40 and AdV41 will be useful for identifying these viruses in environmental and clinical samples.  相似文献   

11.
A quantitative real-time TaqMan PCR assay for detection of human adenoviruses (HAdV) was developed using broadly reactive consensus primers and a TaqMan probe targeting a conserved region of the hexon gene. The TaqMan assay correctly identified 56 representative adenovirus prototype strains and field isolates from all six adenovirus species (A to F). Based on infectious units, the TaqMan assay was able to detect as few as 0.4 and 0.004 infectious units of adenovirus serotype 2 (AdV2) and AdV41, respectively, with results obtained in less than 90 min. Using genomic equivalents, the broadly reactive TaqMan assay was able to detect 5 copies of AdV40 (which had zero mismatches with the PCR primers and probe), 8 copies of AdV41, and 350 copies of AdV3 (which had the most mismatches [seven] of any adenovirus serotype tested). For specific detection and identification of F species serotypes AdV40 and AdV41, a second real-time PCR assay was developed using fluorescence resonance energy transfer (FRET) probes that target the adenovirus fiber gene. The FRET-based assay had a detection limit of 3 to 5 copies of AdV40 and AdV41 standard DNA and was able to distinguish between AdV40 and AdV41 based on melting curve analysis. Both the TaqMan and FRET PCR assays were quantitative over a wide range of virus titers. Application of these assays for detection of adenoviruses and type-specific identification of AdV40 and AdV41 will be useful for identifying these viruses in environmental and clinical samples.  相似文献   

12.
PCR with several pairs of primers facilitates screening for new isoenzymes among highly homologous cytochrome P450s (CYPs). Combinations of two pairs of primers, which amplify N- and C-terminal coding sequences of either CYP3A1/CYP3A23 or CYP3A2 detected the presence of a previously unrecognized CYP3A in enterocyte microsomes isolated from rats. PCR, Northern blot, and immunoblotting with specific antibodies indicated that this isoenzyme is clearly distinguishable from CYP3A1, 3A23 or 3A2. Sequencing of a 285 bp coding fragment of this gene revealed 97% similarity with rat olfactory CYP3A9 (P450olf3).  相似文献   

13.
The TaqMan real-time PCR method for the quantitative detection of C. botulinum type A was developed based on sequence-specific hybridization probes. The validity of this assay was verified by using 10 genera of 20 strains, including reference strains of C. botulinum types A, B, C, D, E and F. The detection limit of this assay was evaluated on C. botulinum type A, using a 10-fold dilution series of DNA and spores . The DNA and spores were detected up to level of 0.1 ng/ml and 10(2)spores/ml, respectively. Spore spiked food sample preparation prior to the real-time PCR was performed by two methods, heat treatment and GuSCN. The detection limits after heat treatment showed 10(2) spores/ml for spiked sausage slurry, and 10(3) spores/ml for spiked canned corn slurry, while detection limits after GuSCN precipitation showed 10(2) spores/ml in both sausage and canned corn. Therefore the real-time PCR assay after GuSCN precipitation is useful for the quantification of C. botulinum type A because it showed identical CT values in both pure spore solutions and food slurries. We suggest that quantitative analysis of C. botulinum type A by TaqMan real-time PCR can be a rapid and accurate assessment method for botulinal risk in food samples.  相似文献   

14.
设计合成了一套引物和TaqMan探针,以扩增猪繁殖与呼吸综合征病毒的核衣壳蛋白基因,通过反应条件的优化,在国内首次建立了快速定量检测猪繁殖与呼吸综合征病毒的实时PCR方法,并用该法检测患病猪的肺脏等样品。结果表明该方法具有较好的特异性和重复性,对PRRSV细胞培养物的检测下限为0.01TCID50,敏感性比常规RT-PCR高100倍;对10份PRRS疑似猪肺脏样品检测5份为阳性,与病毒分离的阳性符合率为100%。该方法具有快速、灵敏、准确、低污染等优点,在PRRSV的早期检测、预防控制、进出口检疫及基础研究中会起到重要作用。  相似文献   

15.
An enhanced polymerase chain reaction (PCR) assay to detect the coronavirus associated with severe acute respiratory syndrome (SARS-CoV) was developed in which a target gene pre-amplification step preceded TaqMan real-time fluorescent PCR. Clinical samples were collected from 120 patients diagnosed as suspected or probable SARS cases and analyzed by conventional PCR followed by agarose gel electrophoresis, conventional TaqMan real-time PCR, and our enhanced TaqMan real-time PCR assays. An amplicon of the size expected from SARS-CoV was obtained from 28/120 samples using the enhanced real-time PCR method. Conventional PCR and real-time PCR alone identified fewer SARS-CoV positive cases. Results were confirmed by viral culture in 3/28 cases. The limit of detection of the enhanced real-time PCR method was 10(2)-fold higher than the standard real-time PCR assay and 10(7)-fold higher than conventional PCR methods. The increased sensitivity of the assay may help control the spread of the disease during future SARS outbreaks.  相似文献   

16.
A novel cytochrome P450, CYP4x1, was identified in EST databases on the basis of similarity to a conserved region in the C-helix of the CYP4A family. The human and mouse CYP4x1 cDNAs were cloned and found to encode putative cytochrome P450 proteins. Molecular modelling of CYP4x1 predicted an unusual substrate binding channel for the CYP4 family. Expression of human CYP4x1 was detected in brain by EST analysis, and in aorta by northern blotting. The mouse cDNA was used to demonstrate that the Cyp4x RNA was expressed principally in brain, and at much lower levels in liver; hepatic levels of the Cyp4x1 RNA were not affected by treatment with the inducing agents phenobarbital, dioxin, dexamethasone or ciprofibrate, nor were the levels affected in PPARalpha-/- mice. A specific antibody for Cyp4x1 was developed, and shown to detect Cyp4x1 in brain; quantitation of the Cyp4x1 protein in brain demonstrated approximately 10 ng of Cyp4x1 protein.mg(-1) microsomal protein, showing that Cyp4x1 is a major brain P450. Immunohistochemical localization of the Cyp4x1 protein in brain showed specific staining of neurons, choroids epithelial cells and vascular endothelial cells. These data suggest an important role for Cyp4x1 in the brain.  相似文献   

17.
A rapid detection method that is both quantitative and specific for the water-borne human parasite Cryptosporidium parvum is reported. Real-time polymerase chain reaction (PCR) combined with fluorescent TaqMan technology was used to develop this sensitive and accurate assay. The selected primer-probe set identified a 138-bp section specific to a C. parvum genomic DNA sequence. The method was optimized on a cloned section of the target DNA sequence, then evaluated on C. parvum oocyst dilutions. Quantification was accomplished by comparing the fluorescence signals obtained from test samples of C. parvum oocysts with those obtained from standard dilutions of C. parvum oocysts. This real-time PCR assay allowed reliable quantification of C. parvum oocysts over six orders of magnitude with a baseline sensitivity of six oocysts in 2 h.  相似文献   

18.
A very sensitive assay for the rapid detection of pathogenic bacteria based on electrochemical genosensing has been designed. The assay was performed by the PCR specific amplification of the eaeA gene, related with the pathogenic activity of Escherichia coli O157:H7. The efficiency and selectivity of the selected primers were firstly studied by using standard Quantitative PCR (Q-PCR) based on TaqMan fluorescent strategy. The bacteria amplicon was detected by using two different electrochemical genosensing strategies, a highly selective biosensor based on a bulk-modified avidin biocomposite (Av-GEB) and a highly sensitive magneto sensor (m-GEC). The electrochemical detection was achieved in both cases by the enzyme marker HRP. The assay showed to be very sensitive, being able to detect 4.5 ng microl(-1) and 0.45 ng microl(-1) of the original bacterial genome after only 10 cycles of PCR amplification, when the first and the second strategies were used, respectively. Moreover, the electrochemical strategies for the detection of the amplicon showed to be more sensitive compared with Q-PCR strategies based on fluorescent labels such as TaqMan probes.  相似文献   

19.
The protozoan parasite Giardia lamblia is the most common cause of waterborne disease outbreaks associated with drinking water in the United States. The conventional method used for the enumeration of Giardia cysts in water is based on immunofluorescence with monoclonal antibodies. It is tedious and time-consuming and has the major drawback to be non-specific for the only species infecting humans, G. lamblia. We have developed a real-time polymerase chain reaction (PCR) method using fluorescent TaqMan technology, which improved the specificity of G. lamblia cyst quantification compared to the immunofluorescence assay (IFA). However, this PCR was not totally specific for G. lamblia species and amplified Giardia ardeae target as well. This method showed a sensitivity of 0.45 cysts per reaction and an efficiency of 95% in purified suspensions. We have then applied this quantification method to raw wastewater, a medium containing numerous debris, particles and PCR inhibitors. The adaptation to these environmental samples was realized by a screening of three cyst purification methods and six DNA extraction protocols. Real-time quantification was accomplished by the simultaneous amplification of unknown samples and a tenfold serial dilution of purified G. lamblia cysts. For all samples, the concentrations observed with TaqMan PCR method were compared to the IFA values. Giardia spp. cysts were detected in all non-spiked raw wastewater samples with IFA procedure and the concentrations of Giardia spp. cysts used for the comparison between the two methods ranged between 3.3x10(2)/l and 4.3x10(3)/l. The highest TaqMan PCR/IFA ratios were observed when Percoll/sucrose flotation was combined with DNA extraction protocol optimized for cyst wall lysis, impurities adsorption on a resin, and double step protein digestion and column purification. The concentrations observed with this TaqMan PCR method ranged from 2.5x10(2) to 2.4x10(3) G. lamblia cysts/l and only one sample resulted in a no amplification curve. Thus, we developed a TaqMan PCR method increasing the rapidity and specificity of G. lamblia cyst quantification. The combination of Percoll/sucrose flotation and DNA extraction optimized protocol before TaqMan assay has provided a good indication of the G. lamblia contamination level in raw sewage samples.  相似文献   

20.
In vertebrates, cytochrome P450s of the CYP2 and CYP3 families play a dominant role in drug metabolism, while in insects members of the CYP6 and CYP28 families have been implicated in metabolism of insecticides and toxic natural plant compounds. A degenerate 3 RACE strategy resulted in the identification of fifteen novel P450s from an alkaloid-resistant species of Drosophila. The strong (17.4-fold) and highly specific induction of a single gene (CYP4D10) by the toxic isoquinoline alkaloids of a commonly utilized host-plant (saguaro cactus) provides the first indication that members of the CYP4 family in insects may play an important role in the maintenance of specific insect-host plant relationships. Strong barbiturate inducibility of CYP4D10 and two other D. mettleri P450 sequences of the CYP4 family was also observed, suggesting a pattern of xenobiotic responsiveness more similar to those of several vertebrate drug-metabolizing enzymes than to putative vertebrate CYP4 homologs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号