首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
AMPK regulates circadian rhythms in a tissue- and isoform-specific manner   总被引:1,自引:0,他引:1  

Background

AMP protein kinase (AMPK) plays an important role in food intake and energy metabolism, which are synchronized to the light-dark cycle. In vitro, AMPK affects the circadian rhythm by regulating at least two clock components, CKIα and CRY1, via direct phosphorylation. However, it is not known whether the catalytic activity of AMPK actually regulates circadian rhythm in vivo.

Methodology/Principal Finding

The catalytic subunit of AMPK has two isoforms: α1 and α2. We investigate the circadian rhythm of behavior, physiology and gene expression in AMPKα1−/− and AMPKα2−/− mice. We found that both α1−/− and α2−/− mice are able to maintain a circadian rhythm of activity in dark-dark (DD) cycle, but α1−/− mice have a shorter circadian period whereas α2−/− mice showed a tendency toward a slightly longer circadian period. Furthermore, the circadian rhythm of body temperature was dampened in α1−/− mice, but not in α2−/− mice. The circadian pattern of core clock gene expression was severely disrupted in fat in α1−/− mice, but it was severely disrupted in the heart and skeletal muscle of α2−/− mice. Interestingly, other genes that showed circadian pattern of expression were dysreguated in both α1−/− and α2−/− mice. The circadian rhythm of nicotinamide phosphoryl-transferase (NAMPT) activity, which converts nicotinamide (NAM) to NAD+, is an important regulator of the circadian clock. We found that the NAMPT rhythm was absent in AMPK-deficient tissues and cells.

Conclusion/Significance

This study demonstrates that the catalytic activity of AMPK regulates circadian rhythm of behavior, energy metabolism and gene expression in isoform- and tissue-specific manners.  相似文献   

2.
3.
4.
Lack of sleep time is a menace to modern people, and it leads to chronic diseases and mental illnesses. Circadian processes control sleep, but little is known about how sleep affects the circadian system. Therefore, we performed a 28-day sleep restriction (SR) treatment in mice. Sleep restriction disrupted the clock genes’ circadian rhythm. The circadian rhythms of the Cry1 and Per1/2/3 genes disappeared. The acrophase of the clock genes (Bmal1, Clock, Rev-erbα, and Rorβ) that still had a circadian rhythm was advanced, while the acrophase of negative clock gene Cry2 was delayed. Clock genes’ upstream signals ERK and EIFs also had circadian rhythm disorders. Accompanied by changes in the central oscillator, the plasma output signal (melatonin, corticosterone, IL-6, and TNF-α) had an advanced acrophase. While the melatonin mesor was decreased, the corticosterone, IL-6, and TNF-α mesor was increased. Our results indicated that chronic sleep loss could disrupt the circadian rhythm of the central clock through ERK and EIFs and affect the output signal downstream of the core biological clock.  相似文献   

5.
Chlamydomonas reinhardtii has been used as an experimental model organism for circadian rhythm research for more than 30 yr. Some of the physiological rhythms of this alga are well established, and several clock mutants have been isolated. The cloning of clock genes from these mutant strains by positional cloning is under way and should give new insights into the mechanism of the circadian clock. In a spectacular space experiment, the question of the existence of an endogenous clock vs. an exogenous mechanism has been studied in this organism. With the emergence of molecular analysis of circadian rhythms in plants in 1985, a circadian gene expression pattern of several nuclear and chloroplast genes was detected. Evidence is now accumulating that shows circadian control at the translational level. In addition, the gating of the cell cycle by the circadian clock has been analyzed. This review focuses on the different aspects of circadian rhythm research in C. reinhardtii over the past 30 yr. The suitability of Chlamydomonas as a model system in chronobiology research and the adaptive significance of the observed rhythms will be discussed.  相似文献   

6.
A long-term high-fat diet may result in a fatty liver. However, whether or not high-fat diets affect the hepatic circadian clock is controversial. The objective of this study is to investigate the effects of timed high-fat diet on the hepatic circadian clock and clock-controlled peroxisome proliferator-activated receptor (PPAR) α-mediated lipogenic gene expressions. Mice were orally administered high-fat milk in the evening for 4 weeks. The results showed that some hepatic clock genes, such as Clock, brain-muscle-Arnt-like 1 (Bmal1), Period 2 (Per2), and Cryptochrome 2 (Cry2) exhibited obvious changes in rhythms and/or amplitudes. Alterations in the expression of clock genes, in turn, further altered the circadian rhythm of PPARα expression. Among the PPARα target genes, cholesterol 7α-hydroxylase (CYP7A1), 3-hydroxy-3-methylglutaryl-coenzyme A reductase, low-density lipoprotein receptor, lipoprotein lipase, and diacylglycerol acyltransferase (DGAT) showed marked changes in rhythms and/or amplitudes. In particular, significant changes in the expressions of DGAT and CYP7A1 were observed. The effects of a high-fat diet on the expression of lipogenic genes in the liver were accompanied by increased hepatic cholesterol and triglyceride levels. These results suggest that timed high-fat diets at night could change the hepatic circadian expressions of clock genes Clock, Bmal1, Per2, and Cry2 and subsequently alter the circadian expression of PPARα-mediated lipogenic genes, resulting in hepatic lipid accumulation.  相似文献   

7.
A circadian rhythm for visual sensitivity has been intensively assessed in animals. This rhythm may be due to the existence of a circadian clock in the mammalian eye, which could account for fluctuating sensitivity to light over the day in certain species. However, very few studies have been devoted to the human visual system. The present experiment was designed to assess a possible rhythm of visual sensitivity using a psychophysical method over the whole 24h period. Twelve subjects underwent visual detection threshold measures in a protocol that allowed one point every 2h. The results show that the visual detection threshold changes over the 24h period, with high thresholds in the morning, a progressive decrease over the day and the early night, and an increase during the last part of the night. These data suggest that a circadian rhythm influences visual sensitivity to mesopic luminance in humans. (Chronobiology International, 17(6), 795-805, 2000)  相似文献   

8.
9.
In the subtropical finch, spotted munia (Lonchura punctulata) circannual rhythms (of gonads, fattening, feeding) have been demonstrated in an information-free environment of continuous illumination (LL), rendering it an ideal model for research on the physiology of the circannual clock. In an attempt to understand the involvement, if any, of the circadian system in the genesis of circannual rhythms, we studied the effect of pinealectomy (LL 15 lux) and strong continuous illumination (LL 300 lux), both known to abolish circadian rhythms, on the circadian perch-hopping rhythm and on the circannual rhythm of reproduction and fattening in the same birds. While both pinealectomy and LL 300 lux treatments abolished the circadian rhythm of motor activity, they had no effect on the circannual rhythms of gonadal size and fattening. If the endogenous circadian rhythm in perch-hopping can be taken to reflect the circadian clock mechanism associated with gonadal functioning, present results suggest that circannual rhythm of reproduction in spotted munia is independent of circadian events.  相似文献   

10.
Metformin is one of the most commonly used first line drugs for type II diabetes. Metformin lowers serum glucose levels by activating 5'-AMP-activated kinase (AMPK), which maintains energy homeostasis by directly sensing the AMP/ATP ratio. AMPK plays a central role in food intake and energy metabolism through its activities in central nervous system and peripheral tissues. Since food intake and energy metabolism is synchronized to the light-dark (LD) cycle of the environment, we investigated the possibility that AMPK may affect circadian rhythm. We discovered that the circadian period of Rat-1 fibroblasts treated with metformin was shortened by 1 h. One of the regulators of the period length is casein kinase Iepsilon (CKIepsilon), which by phosphorylating and inducing the degradation of the circadian clock component, mPer2, shortens the period length. AMPK phosphorylates Ser-389 of CKIepsilon, resulting in increased CKIepsilon activity and degradation of mPer2. In peripheral tissues, injection of metformin leads to mPer2 degradation and a phase advance in the circadian expression pattern of clock genes in wild-type mice but not in AMPK alpha2 knock-out mice. We conclude that metformin and AMPK have a previously unrecognized role in regulating the circadian rhythm.  相似文献   

11.
Lombardi L  Schneider K  Tsukamoto M  Brody S 《Genetics》2007,175(3):1175-1183
In Neurospora, the circadian rhythm is expressed as rhythmic conidiation driven by a feedback loop involving the protein products of frq (frequency), wc-1 (white collar-1), and wc-2, known as the frq/wc (FWC) oscillator. Although strains carrying null mutations such as frq(10) or wc-2Delta lack a functional FWC oscillator and do not show a rhythm under most conditions, a rhythm can be observed in them by the addition of geraniol or farnesol to the media. Employing this altered media as an assay, the effect of other clock mutations in a frq(10)- or wc-2Delta-null background can be measured. It was found that the existing clock mutations fall into three classes: (1) those, such as prd-3 or prd-4 or frq(1), that showed no effect in a clock null background; (2) those, such as prd-1 or prd-2 or prd-6, that did have a measurable effect in the frq(10) background; and (3) those, such as the new mutation ult, that suppressed the frq(10) or wc-2Delta effect, i.e., geraniol/farnesol was not required for a visible rhythm. This classification suggests that some of the known clock mutations are part of a broader multioscillator system.  相似文献   

12.
Circadian clocks coordinate physiological, neurological, and behavioral functions into circa 24 hour rhythms, and the molecular mechanisms underlying circadian clock oscillations are conserved from Drosophila to humans. Clock oscillations and clock-controlled rhythms are known to dampen during aging; additionally, genetic or environmental clock disruption leads to accelerated aging and increased susceptibility to age-related pathologies. Neurodegenerative diseases, such as Alzheimer''s disease (AD), are associated with a decay of circadian rhythms, but it is not clear whether circadian disruption accelerates neuronal and motor decline associated with these diseases. To address this question, we utilized transgenic Drosophila expressing various Amyloid-β (Aβ) peptides, which are prone to form aggregates characteristic of AD pathology in humans. We compared development of AD-like symptoms in adult flies expressing Aβ peptides in the wild type background and in flies with clocks disrupted via a null mutation in the clock gene period (per01). No significant differences were observed in longevity, climbing ability and brain neurodegeneration levels between control and clock-deficient flies, suggesting that loss of clock function does not exacerbate pathogenicity caused by human-derived Aβ peptides in flies. However, AD-like pathologies affected the circadian system in aging flies. We report that rest/activity rhythms were impaired in an age-dependent manner. Flies expressing the highly pathogenic arctic Aβ peptide showed a dramatic degradation of these rhythms in tune with their reduced longevity and impaired climbing ability. At the same time, the central pacemaker remained intact in these flies providing evidence that expression of Aβ peptides causes rhythm degradation downstream from the central clock mechanism.  相似文献   

13.
This study investigates the relationship between the circadian clock and metabolism based on recordings of the extracellular pH in cultures of the marine dinoflagellate, Gonyaulax polyedra. In light-dark cycles, pH of the medium rises during the light phase and declines in the dark. The amplitude of this pH-rhythm correlates with light intensity, indicating photosynthesis (and respiration) as the driving force. The recorded extracellular pH changes probably reflect the need to control intracellular pH in spite of pH-modifying reactions. The daily pH-changes are under control of the circadian clock because they continue to oscillate with a circa-24 h period in constant light, albeit with a smaller amplitude. Similar to other circadian output rhythms, the pH rhythm depends (amplitude and phase) on nitrate levels in the medium. Both the bioluminescence and the pH rhythm can also be shifted by extracellular pH-changes although Gonyaulax is rarely exposed to significant pH changes in its marine ecosystems (except for highly dense algal blooms). Because intracellular proton levels are both affecting circadian input and output they form a feedback loop with the Gonyaulax circadian system indicating complex interactions between metabolism and the circadian clock.  相似文献   

14.

Introduction

Patients with rheumatoid arthritis (RA) have disturbances in the hypothalamic-pituitary-adrenal (HPA) axis. These are reflected in altered circadian rhythm of circulating serum cortisol, melatonin and IL-6 levels and in chronic fatigue. We hypothesized that the molecular machinery responsible for the circadian timekeeping is perturbed in RA. The aim of this study was to investigate the expression of circadian clock in RA.

Methods

Gene expression of thirteen clock genes was analyzed in the synovial membrane of RA and control osteoarthritis (OA) patients. BMAL1 protein was detected using immunohistochemistry. Cell autonomous clock oscillation was started in RA and OA synovial fibroblasts using serum shock. The effect of pro-inflammatory stimulus on clock gene expression in synovial fibroblasts was studied using IL-6 and TNF-α.

Results

Gene expression analysis disclosed disconcerted circadian timekeeping and immunohistochemistry revealed strong cytoplasmic localization of BMAL1 in RA patients. Perturbed circadian timekeeping is at least in part inflammation independent and cell autonomous, because RA synovial fibroblasts display altered circadian expression of several clock components, and perturbed circadian production of IL-6 and IL-1β after clock resetting. However, inflammatory stimulus disturbs the rhythm in cultured fibroblasts. Throughout the experiments ARNTL2 and NPAS2 appeared to be the most affected clock genes in human immune-inflammatory conditions.

Conclusion

We conclude that the molecular machinery controlling the circadian rhythm is disturbed in RA patients.  相似文献   

15.
Yuan Q  Lin F  Zheng X  Sehgal A 《Neuron》2005,47(1):115-127
Entrainment of the Drosophila circadian clock to light involves the light-induced degradation of the clock protein timeless (TIM). We show here that this entrainment mechanism is inhibited by serotonin, acting through the Drosophila serotonin receptor 1B (d5-HT1B). d5-HT1B is expressed in clock neurons, and alterations of its levels affect molecular and behavioral responses of the clock to light. Effects of d5-HT1B are synergistic with a mutation in the circadian photoreceptor cryptochrome (CRY) and are mediated by SHAGGY (SGG), Drosophila glycogen synthase kinase 3beta (GSK3beta), which phosphorylates TIM. Levels of serotonin are decreased in flies maintained in extended constant darkness, suggesting that modulation of the clock by serotonin may vary under different environmental conditions. These data identify a molecular connection between serotonin signaling and the central clock component TIM and suggest a homeostatic mechanism for the regulation of circadian photosensitivity in Drosophila.  相似文献   

16.
Peng Chen  Jianfa Zhang 《FEBS letters》2010,584(8):1597-1601
Disruption in circadian rhythms either by mutation in mice or by shiftwork in people, is associated with an increased risk for the development of multiple organ diseases. In turn, organ disease may influence the function of clock genes and peripheral circadian systems. Here we showed that hepatic fibrosis induced by carbon tetrachloride in mice leads to alterations in the circadian rhythms of hepatic clock genes. Especially, we found an impaired daily Cry2 rhythm in the fibrotic livers, with markedly decreased levels during the day time while compared with control livers. Associatively, the expressions of two important clock-regulated genes peroxisome proliferator-activated receptor alpha and cytochrome P450 oxidoreductase lost circadian rhythm with significantly decreased levels during the light-dark (12/12 h) cycle in fibrotic livers.  相似文献   

17.
Evidence of a circadian clock mechanism was found in the cave crayfish Procambarus cavernicola. Analysis of motor activity recorded in this species during 12 consecutive days in either free running (constant darkness, DD or constant light, LL) or entrainment conditions (12 h of light alternated with 12 h of darkness, 12 : 12 LD) showed a well recognized circadian rhythm. In this rhythm however, the absence of synchronization by periodical external signals was notorious. The comparison between the motor circadian rhythm in cave crayfish and epigeous crayfish Procambarus clarkii (these last studied during juvenile and adult stages), evidenced strong similitude between the motor circadian rhythm of cave crayfish and juvenile epigeous crayfish.  相似文献   

18.
Both a circadian clock and an ultradian clock (period 4—5 h) have previously been described for the ciliated protozoon Tetrahymena. The present communication demonstrates the existence of yet another cellular clock: an ultradian rhythm with a period of about 30 min. The period was found to be well temperature-compensated over the range studied, i.e., between 19°C and 33°C. Ultradian rhythmicity was initiated by dilution of stationary-phase cultures, which were kept previously in a light-dark cycle, into fresh medium. LD treatment during stationary phase was an absolute requirement, since cultures kept in either LL or DD did not produce the ultradian rhythmicity after refeeding. The clock exerts control over respiration; the observed oscillation in oxygen uptake is just a hand of the clock: after a limitation of oxygen supply had ended, the rhythm resumed with the same phase and period as that in control cultures. The clock exerts temporal control also over cell division; in the refed culture cell division resumed with an oscillation in the number of dividing organisms. The period of this oscillation corresponded to that of the rhythm in respiratory activity, indicating that the same ultradian clock may exert control over different cellular functions. Analysis of a second Tetrahymena strain indicates that period length of the ultradian clock is a strain-specific characteristic.  相似文献   

19.

Background

Circadian rhythms govern a large array of physiological and metabolic functions. To achieve plasticity in circadian regulation, proteins constituting the molecular clock machinery undergo various post-translational modifications (PTMs), which influence their activity and intracellular localization. The core clock protein BMAL1 undergoes several PTMs. Here we report that the Akt-GSK3β signaling pathway regulates BMAL1 protein stability and activity.

Principal Findings

GSK3β phosphorylates BMAL1 specifically on Ser 17 and Thr 21 and primes it for ubiquitylation. In the absence of GSK3β-mediated phosphorylation, BMAL1 becomes stabilized and BMAL1 dependent circadian gene expression is dampened. Dopamine D2 receptor mediated signaling, known to control the Akt-GSK3β pathway, influences BMAL1 stability and in vivo circadian gene expression in striatal neurons.

Conclusions

These findings uncover a previously unknown mechanism of circadian clock control. The GSK3β kinase phosphorylates BMAL1, an event that controls the stability of the protein and the amplitude of circadian oscillation. BMAL1 phosphorylation appears to be an important regulatory step in maintaining the robustness of the circadian clock.  相似文献   

20.
The gymnotid electric fish, Eigenmannia virescens, exhibits electric discharge rhythmicity both in alternate light-dark (LD; 12h light, 12h dark [LD 12:12]) and in constant dark (DD) conditions. It suggests that the electric discharge rhythm is under control of the circadian clock. The free-running periods (FRPs) of electric discharge rhythms at 21°C in DD are greater than, but close to, 24h. The maximum of the electric discharge in the Eigenmannia system peaks approximately at circadian time 6 (CT6) in the middle of the subjective day. The circadian oscillator in the system is temperature compensated. This original report reveals the relationship between electric discharge activity and the circadian pacemaker in Eigenmannia and provides an alternative system to investigate circadian rhythms in vertebrates. (Chronobiology International, 17(1), 43-48, 2000)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号