首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bacillus thuringiensis ssp. israelensis (Bti) is increasingly used as an ecologically friendly anti-mosquito agent. The bacterium cells undergo fermentation in dilute suspensions; before practical use, therefore it is necessary to concentrate the suspensions. Aggregation by polymers is a powerful tool with which to regulate the stability of suspensions. Typically, polymers at low concentrations destabilize and at high concentrations stabilize colloidal systems. Bti suspensions can be flocculated efficiently by either cationic or anionic polyelectrolytes. Cationic polyelectolytes were found to be the most efficient flocculants for bacterial suspensions. It was shown that the degree of toxicity of the flocculated Bti suspensions for biting mosquito larvae was in the same range than in non-flocculated suspension.  相似文献   

2.
通过土培盆栽试验,研究了16份野生大麦种质资源在相同供磷水平下磷素吸收利用的基因型差异,探讨磷高效野生大麦根际土壤无机磷组分特征.结果表明:拔节期和扬花期磷素干物质生产效率(CV=11.6%、12.4%)、成熟期磷素籽粒生产效率(CV=13.7%)基因型间差异较大.不同生育时期磷高效基因型IS-22-30和IS-22-25生物量、磷积累量和磷素干物质生产效率均显著高于低效基因型IS-07-07,且高效基因型的籽粒产量分别是低效基因型的3.10和3.20倍.不施磷、施磷30 mg·kg-1条件下,不同磷素利用效率野生大麦根际土壤有效磷和水溶性磷含量均显著低于非根际土壤,且高效基因型较低效基因型根际土壤水溶性磷亏缺量更大.根际与非根际土壤无机磷组分含量为Ca10-P>O-P>Fe-P>Al-P>Ca2-P>Ca8-P.在拔节期和扬花期,施磷30 mg·kg-1条件下,磷高效基因型根际土壤Ca8-P含量显著高于低效基因型,而Ca2-P含量显著低于低效基因型;不施磷条件下,高效基因型根际土壤Ca2-P和Ca8-P含量均显著高于低效基因型,且根际土壤Ca10-P均减少.施磷30 mg·kg-1条件下,根际土壤Fe-P和O-P含量均表现为高效基因型显著高于低效基因型,Al-P含量则呈现相反的趋势;不施磷条件下,高效基因型根际土壤Al-P、Fe-P和O-P含量均显著低于低效基因型.低磷胁迫下,高效基因型活化吸收Ca2-P、Al-P的能力强于低效基因型.  相似文献   

3.
Selection of resistant bacteria at very low antibiotic concentrations   总被引:3,自引:0,他引:3  
The widespread use of antibiotics is selecting for a variety of resistance mechanisms that seriously challenge our ability to treat bacterial infections. Resistant bacteria can be selected at the high concentrations of antibiotics used therapeutically, but what role the much lower antibiotic concentrations present in many environments plays in selection remains largely unclear. Here we show using highly sensitive competition experiments that selection of resistant bacteria occurs at extremely low antibiotic concentrations. Thus, for three clinically important antibiotics, drug concentrations up to several hundred-fold below the minimal inhibitory concentration of susceptible bacteria could enrich for resistant bacteria, even when present at a very low initial fraction. We also show that de novo mutants can be selected at sub-MIC concentrations of antibiotics, and we provide a mathematical model predicting how rapidly such mutants would take over in a susceptible population. These results add another dimension to the evolution of resistance and suggest that the low antibiotic concentrations found in many natural environments are important for enrichment and maintenance of resistance in bacterial populations.  相似文献   

4.
Bacterial chemotaxis may have a significant impact on the structure and function of bacterial communities. Quantification of chemotactic motion is necessary to identify chemoeffectors and to determine the bacterial transport parameters used in predictive models of chemotaxis. When the chemotactic bacteria consume the chemoeffector, the chemoeffector gradient to which the bacteria respond may be significantly perturbed by the consumption. Therefore, consumption of the chemoeffector can confound chemotaxis measurements if it is not accounted for. Current methods of quantifying chemotaxis use bacterial concentrations that are too high to preclude chemoeffector consumption or involve ill-defined conditions that make quantifying chemotaxis difficult. We developed a method of quantifying bacterial chemotaxis at low cell concentrations (~105 CFU/ml), so metabolism of the chemoeffector is minimized. The method facilitates quantification of bacterial-transport parameters by providing well-defined boundary conditions and can be used with volatile and semivolatile chemoeffectors.  相似文献   

5.
Bacterial chemotaxis may have a significant impact on the structure and function of bacterial communities. Quantification of chemotactic motion is necessary to identify chemoeffectors and to determine the bacterial transport parameters used in predictive models of chemotaxis. When the chemotactic bacteria consume the chemoeffector, the chemoeffector gradient to which the bacteria respond may be significantly perturbed by the consumption. Therefore, consumption of the chemoeffector can confound chemotaxis measurements if it is not accounted for. Current methods of quantifying chemotaxis use bacterial concentrations that are too high to preclude chemoeffector consumption or involve ill-defined conditions that make quantifying chemotaxis difficult. We developed a method of quantifying bacterial chemotaxis at low cell concentrations ( approximately 10(5) CFU/ml), so metabolism of the chemoeffector is minimized. The method facilitates quantification of bacterial-transport parameters by providing well-defined boundary conditions and can be used with volatile and semivolatile chemoeffectors.  相似文献   

6.
Contamination of polymerase chain reaction (PCR) reagents continues to be a major problem when consensus primers are used for detection of low concentrations of bacterial DNA. We designed a real-time polymerase chain reaction (PCR) for quantification of bacterial DNA by using consensus primers that bind specifically to the 16S region of bacterial DNA. We have tested four different methods of decontamination of PCR reagents in a project aimed at detecting bacterial DNA at low concentrations: deoxyribonuclease (DNAse) treatment, restriction endonuclease digestion, UV irradiation, and 8-methoxypsoralen in combination with long-wave UV light to intercalate contaminating DNA into double-stranded DNA. All four methods result in inhibition of the PCR reaction, and most of the decontamination procedures failed to eliminate the contaminating bacterial DNA. Only the DNAse decontamination proved to be efficient in eliminating contaminating DNA while conserving PCR efficiency. All four decontamination methods are time consuming and have the possibility of carrying new contamination into the reaction mixture. However, decontamination with DNAse may help, together with the use of highly purified PCR reagents, in detecting small amounts of bacterial DNA in clinical specimens.  相似文献   

7.
The volcanic Sulphur Springs, St. Lucia, present an extreme environment due to high temperatures, low pH values, and high concentrations of sulfate and boron. St. Lucia offers some unique geochemical characteristics that may shape the microbial communities within the Sulphur Springs area. We chose six pools representing a range of geochemical characteristics for detailed microbial community analyses. Chemical concentrations varied greatly between sites. Microbial diversity was analyzed using 16S rRNA gene clone library analyses. With the exception of one pool with relatively low concentrations of dissolved ions, microbial diversity was very low, with Aquificales sequences dominating bacterial communities at most pools. The archaeal component of all pools was almost exclusively Acidianus spp. and did not vary between sites with different chemical characteristics. In the pool with the highest boron and sulfate concentrations, only archaeal sequences were detected. Compared with other sulfur springs such as those at Yellowstone, the microbial diversity at St. Lucia is very different, but it is similar to that at the nearby Lesser Antilles island of Montserrat. While high elemental concentrations seem to be related to differences in bacterial diversity here, similarities with other Lesser Antilles sites suggest that there may be a biogeographical component as well.  相似文献   

8.
In Saccharomyces cerevisiae, the transport of ammonium across the plasma membrane for use as a nitrogen source is mediated by at least two functionally distinct transport systems whose respective encoding genes are called MEP1 and MEP2. Mutations in the MEP2 gene affect high affinity, low capacity ammonium transport while mutations in the MEP1 gene disrupt a lower affinity, higher capacity system. In this work, the MEP1 gene has been cloned and sequenced and its expression analyzed. The predicted amino acid sequence reveals a highly hydrophobic, 54 kDa protein with 10 or 11 putative membrane-spanning regions. The predicted Mep1p protein shares high sequence similarity with several bacterial proteins of unknown function, notably the product of the nitrogen-regulated nrgA gene of Bacillus subtilis, and with that of a partial cDNA sequence derived from Caenorhabditis elegans. The Mep1p and related proteins appear to define a new family of transmembrane proteins evolutionarily conserved in at least bacteria, fungi and animals. The MEP1 gene is most highly expressed when the cells are grown on low concentrations of ammonium or on 'poor' nitrogen sources like urea or proline. It is down-regulated, on the other hand, when the concentration of ammonium is high or when other 'good' nitrogen sources like glutamine or asparagine are supplied in the culture medium. The overall properties of Mep1p indicate that it is a transporter of ammonium. Its main function appears to be to enable cells grown under nitrogen-limiting conditions to incorporate ammonium present at relatively low concentrations in the growth medium.  相似文献   

9.
The biodegradation of nitrilotriacetic acid (NTA), a synthetic replacement detergent builder, in the estuarine environment was examined by using a laboratory estuarine simulation. Two interdependent microcosms were used; each of five vessels was equilibrated with a saline gradient between 1.30 and 17.17%, with the final vessel subsequently being increased to a maximum salinity of 31.6%. Each microcosm was seeded simultaneously with heterotrophic bacteria from both fresh and saline sources. Viable counts demonstrated the ability of each microcosm to sustain a mixed heterotrophic bacterial community throughout the range of salinities for 183 days after a stabilization period. Isolation studies demonstrated that both systems contained four bacterial species, representatives of the genera Vibrio and Flavobacterium and members of the coryneform group and the family Enterobacteriaceae. Total bacterial numbers and species diversity decreased with increased salinity. NTA was administered at low and high concentrations, one concentration to each microcosm, initially with the least amount of saline. Removal of both concentrations of NTA occurred and was attributed to biodegradation after a period of bacterial acclimatization. Subsequent dosing of NTA to vessels of higher salinity demonstrated that biodegradation was incomplete at observed mean salinities of greater than 9.18% at low influent NTA concentrations and greater than 5.08% at high influent NTA concentrations. Therefore, acclimatization was dose dependent. It was concluded that NTA acclimatization at the higher salinities ceased because of salinity stress-induced failure of NTA catabolism and not the disappearance of a particular bacterial species.  相似文献   

10.
The biodegradation of nitrilotriacetic acid (NTA), a synthetic replacement detergent builder, in the estuarine environment was examined by using a laboratory estuarine simulation. Two interdependent microcosms were used; each of five vessels was equilibrated with a saline gradient between 1.30 and 17.17%, with the final vessel subsequently being increased to a maximum salinity of 31.6%. Each microcosm was seeded simultaneously with heterotrophic bacteria from both fresh and saline sources. Viable counts demonstrated the ability of each microcosm to sustain a mixed heterotrophic bacterial community throughout the range of salinities for 183 days after a stabilization period. Isolation studies demonstrated that both systems contained four bacterial species, representatives of the genera Vibrio and Flavobacterium and members of the coryneform group and the family Enterobacteriaceae. Total bacterial numbers and species diversity decreased with increased salinity. NTA was administered at low and high concentrations, one concentration to each microcosm, initially with the least amount of saline. Removal of both concentrations of NTA occurred and was attributed to biodegradation after a period of bacterial acclimatization. Subsequent dosing of NTA to vessels of higher salinity demonstrated that biodegradation was incomplete at observed mean salinities of greater than 9.18% at low influent NTA concentrations and greater than 5.08% at high influent NTA concentrations. Therefore, acclimatization was dose dependent. It was concluded that NTA acclimatization at the higher salinities ceased because of salinity stress-induced failure of NTA catabolism and not the disappearance of a particular bacterial species.  相似文献   

11.
Medetomidine is a new antifouling substance, highly effective against barnacles. As part of a thorough ecotoxicological evaluation of medetomidine, its short-term effects on algal and bacterial communities were investigated and environmental concentrations were predicted with the MAMPEC model. Photosynthesis and bacterial protein synthesis for three marine communities, viz. periphyton, epipsammon and plankton were used as effect indicators, and compared with the predicted environmental concentrations (PECs). The plankton community showed a significant decrease in photosynthetic activity of 16% at 2 mg l?1 of medetomidine, which was the only significant effect observed. PECs were estimated for a harbor, shipping lane and marina environment using three different model scenarios (MAMPEC default, Baltic and OECD scenarios). The highest PEC of 57 ng l?1, generated for a marina with the Baltic scenario, was at least 10,000-fold lower than the concentration that significantly decreased photosynthetic activity. It is concluded that medetomidine does not cause any acute toxic effects on bacterial protein synthesis and only small acute effects on photosynthesis at high concentrations in marine microbial communities. It is also concluded that the hazard from medetomidine on these processes is low since the effect levels are much lower than the highest PEC.  相似文献   

12.
Oxygen as attractant and repellent in bacterial chemotaxis.   总被引:12,自引:8,他引:4       下载免费PDF全文
J Shioi  C V Dang    B L Taylor 《Journal of bacteriology》1987,169(7):3118-3123
Studies of bacterial chemotaxis to oxygen (aerotaxis) over a broad range of oxygen concentrations showed that at high concentrations, oxygen was a repellent of Salmonella typhimurium, Escherichia coli, and some bacilli, whereas it is known that at lower concentrations (less than or equal to 0.25 mM dissolved oxygen), oxygen is an attractant. In a temporal assay of aerotaxis, S. typhimurium in medium equilibrated with air (0.25 mM dissolved oxygen) and then exposed to pure oxygen (1.2 mM) tumbled continuously for approximately 20 s. The oxygen concentration that elicited a half-maximal negative (repellent) response was 1.0 mM for both S. typhimurium and E. coli. The receptor for the negative chemoresponse to high concentrations of oxygen is apparently different from the receptor for the positive chemoresponse to low concentrations of oxygen, since the oxygen concentration that elicits a half-maximal positive (attractant) response in S. typhimurium and E. coli is reported to be 0.7 microM. Adaptation to high concentrations of oxygen, like adaptation to low concentrations of oxygen, was independent of methylation of a transducer protein. Only the response to low oxygen concentrations, however, was altered by interaction with the amidated Tsr transducer in cheB mutants.  相似文献   

13.
Oxygen (O2) sensitizes bacterial cells in at least two mechanistically different ways, depending on the specific O2 concentration present during irradiation. Based on previous work from this laboratory, it has been proposed that nitrous oxide (N2O) and low concentrations of O2 share a common mechanism for damage. This mechanism, involving the production of superoxide anion radicals (O2-), is different from that which causes damage at high O2 concentrations. Others, however, have presented evidence that N2O and O2 (usually tested only at high concentrations) act in different ways to sensitize bacterial cells. We have now measured the radiation sensitivity in mixtures of N2O and O2 to observe additivity patterns and to determine if these two agents have any common processes for sensitization. We found that some low O2 concentrations do not increase the response in N2O, although they can have significant sensitizing effects in N2. This lack of additivity is taken as evidence for a common mechanism of damage from N2O and low concentrations of O2. In contrast, damage from high concentrations of O2 is additive to the damage from N2O. The greatest sensitivity, observed with a gas mixture of about 15 per cent O2/85 per cent N2O, is equivalent to the response in 100 per cent N2 plus the maximum amount of damage O2 can cause plus the maximum amount of damage N2O can cause. This additivity is taken as evidence that N2O and high concentrations of O2 sensitize in different ways. Thus, O2 is known to sensitize these bacteria in at least two different ways; one of these is apparently also the way N2O sensitizes.  相似文献   

14.
Terrestrial organic carbon is exported to freshwater systems where it serves as substrate for bacterial growth. Temporal variations in the terrigenous organic carbon support for aquatic bacteria are not well understood. In this paper, we demonstrate how the combined influence of landscape characteristics and hydrology can shape such variations. Using a 13-day bioassay approach, the production and respiration of bacteria were measured in water samples from six small Swedish streams (64° N, 19° E), draining coniferous forests, peat mires, and mixed catchments with typical boreal proportions between forest and mire coverage. Forest drainage supported higher bacterial production and higher bacterial growth efficiency than drainage from mires. The areal export of organic carbon was several times higher from mire than from forest at low runoff, while there was no difference at high flow. As a consequence, mixed streams (catchments including both mire and forest) were dominated by mire organic carbon with low support of bacterial production at low discharge situations but dominated by forest carbon supporting higher bacterial production at high flow. The stimulation of bacterial growth during high-flow episodes was a result of higher relative export of organic carbon via forest drainage rather than increased drainage of specific “high-quality” carbon pools in mire or forest soils.  相似文献   

15.
The PhoP-PhoQ two-component system is commonly used by bacteria to sense environmental factors. Here we show that the PhoP-PhoQ system of Edwardsiella tarda detects changes in environmental temperature and Mg(2+) concentration as well as regulates the type III and VI secretion systems through direct activation of esrB. Protein secretion is activated from 23 to 35 °C or at low Mg(2+) concentrations, but it is suppressed at or below 20 °C, at or above 37 °C, or at high Mg(2+) concentrations. The effects of temperature and Mg(2+) concentration are additive. The PhoQ sensor domain has a low T(m) of 37.9 °C, and it detects temperatures through a conformational change of its secondary structure. Mutation of specific Pro or Thr residues increased the stability of the PhoQ sensor drastically, altering its temperature-sensing ability. The PhoQ sensor detects Mg(2+) concentration through the direct binding of Mg(2+) to a cluster of acidic residues (DDDSAD) and through changes that likely affect its tertiary structure. Here, we describe for the first time the use of PhoP-PhoQ as a temperature sensor for bacterial virulence control.  相似文献   

16.
《Animal biotechnology》2013,24(1):129-147

It is generally believed that it is better to use medicinal products as therapeutics to treat disease situations, using high doses for short periods of time, rather than as prophylactics, when low doses are fed continuously. It is therefore the continuous use of low levels of medicinal products as growth promoters in farm animals that has been brought into question, as it is thought that this may increase the risk of development of bacterial resistance to antibiotics used as therapeutic drugs to treat disease in humans.  相似文献   

17.
Medetomidine is a new antifouling substance, highly effective against barnacles. As part of a thorough ecotoxicological evaluation of medetomidine, its short-term effects on algal and bacterial communities were investigated and environmental concentrations were predicted with the MAMPEC model. Photosynthesis and bacterial protein synthesis for three marine communities, viz. periphyton, epipsammon and plankton were used as effect indicators, and compared with the predicted environmental concentrations (PECs). The plankton community showed a significant decrease in photosynthetic activity of 16% at 2 mg l?1 of medetomidine, which was the only significant effect observed. PECs were estimated for a harbor, shipping lane and marina environment using three different model scenarios (MAMPEC default, Baltic and OECD scenarios). The highest PEC of 57 ng l?1, generated for a marina with the Baltic scenario, was at least 10,000-fold lower than the concentration that significantly decreased photosynthetic activity. It is concluded that medetomidine does not cause any acute toxic effects on bacterial protein synthesis and only small acute effects on photosynthesis at high concentrations in marine microbial communities. It is also concluded that the hazard from medetomidine on these processes is low since the effect levels are much lower than the highest PEC.  相似文献   

18.
The chemoattractive properties of collagen in native (triple-helical) and denatured (random coil) conformation were compared in a Boyden chamber type assay to those of collagen fragments derived from cleavage with mammalian or bacterial collagenase using human embryonic dermal fibroblasts as target cells. Chemotaxis to native collagen required low collagen concentrations because fibril formation at high concentrations and at physiological pH and ionic strength prevented chemoattractiveness. Chemotaxis of denatured collagen was comparable to that of native collagen in solution. Cleavage of native collagen with mammalian collagenase increased, digestion with bacterial collagenase abolished its chemotactic activity. It is thought that these data may reflect the in vivo situation during inflammation and wound repair.  相似文献   

19.
Shigella dysenteriae serotype 1, a major cause of bacillary dysentery in humans, can use heme as a source of iron. Genes for the transport of heme into the bacterial cell have been identified, but little is known about proteins that control the fate of the heme molecule after it has entered the cell. The shuS gene is located within the heme transport locus, downstream of the heme receptor gene shuA. ShuS is a heme binding protein, but its role in heme utilization is poorly understood. In this work, we report the construction of a chromosomal shuS mutant. The shuS mutant was defective in utilizing heme as an iron source. At low heme concentrations, the shuS mutant grew slowly and its growth was stimulated by either increasing the heme concentration or by providing extra copies of the heme receptor shuA on a plasmid. At intermediate heme concentrations, the growth of the shuS mutant was moderately impaired, and at high heme concentrations, shuS was required for growth on heme. The shuS mutant did not show increased sensitivity to hydrogen peroxide, even at high heme concentrations. ShuS was also required for optimal utilization of heme under microaerobic and anaerobic conditions. These data are consistent with the model in which ShuS binds heme in a soluble, nontoxic form and potentially transfers the heme from the transport proteins in the membrane to either heme-containing or heme-degrading proteins. ShuS did not appear to store heme for future use.  相似文献   

20.
Summary The enzymes involved in ammonia assimilation by Rhizobium meliloti 4l and their role in the regulation of nitrogen metabolism were studied. Glutamine synthetase (GS) and glutamate synthase (GOGAT) were present at relatively high levels in cells grown in media containing either low or high concentrations of ammonia. NADP-linked glutamate dehydrogenase could not be detected.GOGAT and GS mutants were isolated and characterised. A mutant lacking GOGAT activity did not grow even on high concentrations of ammonia, it was a glutamate auxotroph and was effective in symbiotic nitrogen fixation. The GS and assimilatory nitrate reductase activities of this mutant were not repressible by ammonia but still repressible by casamino acids. A mutant with low GS activity required glutamine for optimal growth. It was ineffective and its nitrate reductase was not inducible.These findings indicate that ammonia is assimilated via the GS/GOGAT pathway in free-living R. meliloti and bacterial GOGAT is not important in symbiosis. Furthermore, GS is suggested to be a controlling element in the nitrogen metabolism of R. meliloti.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号