共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary
Escherichia coli can be transformed to high efficiencies by subjecting a mixture of cells and DNA to a brief but intense electrical field. Factors that affect the transformation efficiency of E.coli strain DH10B were analysed. Optimal conditions gave an efficiency of 108 to 109 transformants/g DNA with E.coli strains K803 and DH10B, and plasmids pB1221.23 and pBSK+. The use of ligated DNA resulted in 106 transformants/g DNA. Detailed protocols for these systems are given. 相似文献
2.
3.
Durfee T Nelson R Baldwin S Plunkett G Burland V Mau B Petrosino JF Qin X Muzny DM Ayele M Gibbs RA Csörgo B Pósfai G Weinstock GM Blattner FR 《Journal of bacteriology》2008,190(7):2597-2606
Escherichia coli DH10B was designed for the propagation of large insert DNA library clones. It is used extensively, taking advantage of properties such as high DNA transformation efficiency and maintenance of large plasmids. The strain was constructed by serial genetic recombination steps, but the underlying sequence changes remained unverified. We report the complete genomic sequence of DH10B by using reads accumulated from the bovine sequencing project at Baylor College of Medicine and assembled with DNAStar's SeqMan genome assembler. The DH10B genome is largely colinear with that of the wild-type K-12 strain MG1655, although it is substantially more complex than previously appreciated, allowing DH10B biology to be further explored. The 226 mutated genes in DH10B relative to MG1655 are mostly attributable to the extensive genetic manipulations the strain has undergone. However, we demonstrate that DH10B has a 13.5-fold higher mutation rate than MG1655, resulting from a dramatic increase in insertion sequence (IS) transposition, especially IS150. IS elements appear to have remodeled genome architecture, providing homologous recombination sites for a 113,260-bp tandem duplication and an inversion. DH10B requires leucine for growth on minimal medium due to the deletion of leuLABCD and harbors both the relA1 and spoT1 alleles causing both sensitivity to nutritional downshifts and slightly lower growth rates relative to the wild type. Finally, while the sequence confirms most of the reported alleles, the sequence of deoR is wild type, necessitating reexamination of the assumed basis for the high transformability of DH10B. 相似文献
4.
Enterotoxigenic Escherichia coli (ETEC) is a prevalent cause of traveler's diarrhea and infant mortality in third-world countries. Heat-labile enterotoxin (LT) is secreted from ETEC via vesicles composed of outer membrane and periplasm. We investigated the role of ETEC vesicles in pathogenesis by analyzing vesicle association and entry into eukaryotic cells. Fluorescently labeled vesicles from LT-producing and LT-nonproducing strains were compared in their ability to bind adrenal and intestinal epithelial cells. ETEC-derived vesicles, but not control nonpathogen-derived vesicles, associated with cells in a time-, temperature-, and receptor-dependent manner. Vesicles were visualized on the cell surface at 4 degrees C and detected intracellularly at 37 degrees C. ETEC vesicle endocytosis depended on cholesterol-rich lipid rafts. Entering vesicles partially colocalized with caveolin, and the internalized vesicles accumulated in a nonacidified compartment. We conclude that ETEC vesicles serve as specifically targeted transport vehicles that mediate entry of active enterotoxin and other bacterial envelope components into host cells. These data demonstrate a role in virulence for ETEC vesicles. 相似文献
5.
Alkaline sucrose gradient sedimentation indicates that ozone can produce DNA single- and double-strand breaks in wild-type E. coli and ozone-sensitive mutant MQ1844(ozrB). Another type of DNA damage repaired only by the ozrB gene product may also be responsible for the killing effect of ozone on E. coli cells. 相似文献
6.
DNA gyrase is an essential enzyme that regulates the DNA topology in bacteria. It belongs to the type II DNA topoisomerase family and is responsible for the introduction of negative supercoils into DNA at the expense of hydrolysis of ATP molecules. The aim of the present work was to study the contribution of I10, one of the most important residues responsible for the stabilization of GyrB dimer and involved in the ATP-binding step, in the ATP-hydrolysis reaction and in the DNA supercoiling mechanism. We constructed MBP-tagged GyrB mutants I10G and Delta4-14. Our results demonstrate that both mutations severely affect the DNA-dependent ATPase activity and DNA supercoiling. Mutation of Y5 residue involved in the formation of ATPase catalytic site (Y5G mutant) had only little effect on the DNA-dependent ATPase activity and DNA supercoiling. Interestingly, the DNA-relaxation activity of MBP-GyrB mutants and wild type was completely inhibited by ATP. Binding of ADPNP to MBP-tagged mutants was significantly decreased. ADPNP had no effect on DNA-relaxation activity of MBP-tagged mutants but was able to inhibit MBP-tagged wild type enzyme. Our results demonstrate that GyrB N-terminal arm, and specially I10 residue is essential for ATP binding/hydrolysis efficiency and DNA transfer through DNA gyrase. 相似文献
7.
Plasmid DNA (pDNA) is an emerging experimental vaccine, produced in E. coli, initially targeted for viral diseases. Unlike traditional protein vaccines whose average dose is micrograms, the average dose of pDNA is on the scale of milligrams. Production yields are, therefore, important for the future development of this vaccine. The E. coli strains currently used for pDNA production, JM109 and DH5alpha, are both suitable for production of stable pDNA due to the deletion of recA and endA, however, these two E. coli K strains are sensitive to growth conditions such as high glucose concentration. On the other hand E. coli BL21 is less sensitive to growth conditions than E. coli JM109 or DH5alpha, this strain grows to higher densities and due to its active glyoxylate shunt and anaplerotic pathways is not sensitive to high glucose concentration. This strain is used for recombinant protein production but not for pDNA production because of its inability to produce stable pDNA. To adapt E. coli BL21 for stable pDNA production, the strain was mutated by deleting both recA and endA, and a proper growth and production strategy was developed. Production values, reaching 2 g/L were obtained using glucose as a carbon source. The produced plasmid, which was constructed for HIV clinical study, was found to have identical properties to the plasmid currently produced by E. coli DH5alpha. 相似文献
8.
Nagatani Naoki Honda Hiroyuki Shimada Takiko Kobayashi Takeshi 《Biotechnology Techniques》1997,11(7):471-473
A plasmid (p Act1-F), containing b-glucuronidase (GUS) as a reporter gene, was delivered into embryogenic rice cells by using silicon carbide whiskers (SCW). The cells were thoroughly mixed with the plasmid and SCW, incubated for 1 day and transient GUS activity was revealed histochemically. Under optimal conditions, 533 transformants per 1 g wet cells were observed. 相似文献
9.
The nonenzymatic reaction between reducing sugars and amino groups of long-lived macromolecules results in an array of chemical modifications that may account for several physiological complications. The characteristics of the reaction are directly related to the type of the reducing sugars involved, whether aldoses or ketoses, phosphorylated or non-phosphorylated, and these in turn determine the consequences of the induced modifications. So far, most studies have been focused on the nonenzymatic reaction between glucose and proteins, while the reaction with fructose, a faster glycating agent, attracted only a minor attention. We have recently demonstrated that long-term fructose consumption induces age-related changes in collagen from skin and cortical bones faster than glucose. In the present study we provide evidence that fructose and its phosphate metabolites can modify DNA faster than glucose and its phosphate metabolites under in vitro conditions. Incubating the plasmid pBR322 with fructose and glucose phosphate metabolites induced DNA modifications and damage that were verified by gel electrophoresis and transformation capacity of the plasmid into an Escherichia coli host. The intensity of the tested sugars to modified and damage DNA after incubation for 15 days increased significantly in the following order: glucose 1-phosphate < glucose < glucose 6-phosphate < fructose 1-phosphate < fructose < fructose 6-phosphate. The data suggest that fructose should deserve more attention as a factor that may influence glycation and induce physiological complications. 相似文献
10.
11.
《Bioorganic & medicinal chemistry》2020,28(8):115402
Cell-penetrating peptides (CPPs) are an attractive tool for delivering membrane-impermeable compounds, including anionic biomacromolecules such as DNA and RNA, into living cells. Amphipathic helical peptides composed of hydrophobic amino acids and cationic amino acids are typical CPPs. In the current study, we designed amphipathic helical 12-mer peptides containing α,α-disubstituted α-amino acids (dAAs), which are known to stabilize peptide secondary structures. The dominant secondary structures of peptides in aqueous solution differed according to the introduced dAAs. Peptides containing hydrophobic dAAs and adopting a helical structure exhibited a good cell-penetrating ability. As an application of amphipathic helical peptides, small interfering RNA (siRNA) delivery into living human hepatoma cells was investigated. One of the peptides containing dAAs dipropylglycine formed stable complexes with siRNA at appropriate zeta-potential and size for intracellular siRNA delivery. This peptide showed effective RNA interference efficiency at short peptide length and low concentrations of peptide and siRNA. These findings will be helpful for the design of amphipathic helical CPPs as intracellular siRNA delivery. 相似文献
12.
13.
Deoxyribonucleic acid modification by intermediate-type modification mutants of Escherichia coli K-12 and B. 下载免费PDF全文
The modification of bacteriophages grown on r-m+/- restriction and modification mutants of Escherichia coli K-12 or B appears to be related to the number of restriction-specific sites in the viral genome. Bacteriophage fd and its mutant U1 fd, which carry two and one B-specific sites, respectively, are not modified in vivo by rB-mB+/- mutant strains. In vitro treatment of fd RF-B+/- deoxyribonucleic acid (DNA) or U1 fd RF-B+/- DNA by endo R-Eco B results in cleavage of the substrate DNA. Lambda bacteriophage, after growth in r-m+/- mutant host strains (lambda-K+/- or lambda-B+/-), is partially protected from in vivo degradation by wild-type homospecific strains. Its efficiency of plating on these strains is approximately 10(-2). However, a hybrid phi80-lambda phage which carries only one K-specific site (sklambda-1) is not modified by rK-mK+/- strains. Labeled DNAs from lambda-B+/- and lambda-K+/- phages were used as substrates for endo R-Eco B and endo R-Eco K nucleases. Zonal centrifugation analysis of the products of the reactions indicate that rK-mK+/- mutants do not protect lambda DNA from in vitro degradation by endo R-Eco K. In contrast, rB-mB+/- mutants appear to partially protect lambda DNA from attack by endo R-Eco B. 相似文献
14.
The impact of high pressure and freezing on survivability of Escherichia coli and human red blood cells was evaluated to determine the utility of high-pressure transitions for preserving living cells. Based on microscopy and survivability, high pressures did not directly impact physical damage to living cells. E. coli studies showed that increased cell death is due to indirect phenomena with decreasing survivability at increasingly high pressures and exposure times. Pressurization rates up to 1.4kbar/min had negligible effects relative to exposures of >5min at high pressures.Both glycine and control of pH near 7.0 were successful in reducing the adverse impacts of high pressure. Survivability increased from <1% at 5min exposure to 2.1kbar of pressure to typical values >20%. The combination of glycine and the buffer salt led to even further improvements in survivability. Pressure changes were used to traverse temperature and pressures consistent with Ice I and Ice III phase boundaries of pure water. 相似文献
15.
Nata?a Anastasov Margit Klier Ina Koch Daniela Angermeier Heinz H?fler Falko Fend Leticia Quintanilla-Martinez 《Journal of Hematopathology》2009,2(1):9-19
RNA interference is a powerful tool for the functional analysis of proteins by specific gene knockdown. In this study, we devised a rapid and efficient way to screen suitable siRNA sequences and subsequently employ them for specific gene knockdown in usually hard-to-transfect lymphoid cell lines, using a self-inactivating lentiviral vector. Two proteins with different half-lives were chosen, cyclin D1 and STAT3. A specific lacZ reporter fusion assay was used to identify highly effective siRNA sequences. Only siRNA molecules with more than 85% of knockdown efficiency were selected for the generation of lentiviral transfer vectors. Transduction rates of 75–99% were achieved in the lymphoma cell lines Granta 519 (mantle cell lymphoma), Karpas 299, and SUDHL-1 (anaplastic large T cell lymphoma), as demonstrated by green fluorescent protein expression in fluorescence-activated cell sorting analysis. The high level of transduction efficiency allows RNA interference studies to be performed on transduced cells without further manipulation, such as cell sorting or cloning. The LacZ reporter system together with the lentivirus technology is a very important tool in the hematology field, which enables experiments in lymphoid cells that were not possible before.
Electronic supplementary material
The online version of this article (doi:10.1007/s12308-008-0020-x) contains supplementary material, which is available to authorized users. 相似文献16.
17.
18.
Cloning of human mitochondrial DNA in Escherichia coli 总被引:32,自引:0,他引:32
J Drouin 《Journal of molecular biology》1980,140(1):15-34
In order to determine its nucleotide sequence, human mitochondrial DNA (mtDNA) purified from term placentae was cloned in Escherichia coli using the plasmid vector pBR322. The products of an mtDNA MboI digestion (23 fragments ranging in size from 2800 to 25 base-pairs (bp)) were ligated with BamHI-cut pBR322. The ampicillin-resistant tetracycline-sensitive colonies obtained upon transformation of E. coli χ1776 were screened by agarose gel electrophoresis of colony lysates, colony hybridization and restriction analysis. All but MboI fragment 2 were obtained in this way. MboI fragments 5 and 8 were each found only once among the 705 clones screened. All other MboI fragments were approximately equally represented in the population of clones except for a slight bias towards smaller fragments. MboI fragment 2 overlaps with the mtDNA BamHI/EcoRI (1.7 kb3) and the 0.9 kb HinIII fragments. These were cloned in similarly restricted pBR322 to provide a set of clones covering most of the mtDNA molecule. Clones representative of each MboI fragment were shown to be complementary to mtDNA by hybridization to Southern blots of mtDNA digests and were thereby partially mapped. Further mapping was obtained by restriction analysis of mtDNA sequentially degraded by exonuclease III. A collection of recombinant clones has thus been obtained using the mtDNA isolated from a single placenta and is now being used to obtain a complete nucleotide sequence of human mtDNA. 相似文献
19.
An endonuclease for depurinated DNA in Escherichia coli B 总被引:7,自引:0,他引:7
20.
Anjum MF Mafura M Slickers P Ballmer K Kuhnert P Woodward MJ Ehricht R 《Applied and environmental microbiology》2007,73(17):5692-5697
The detection of virulence determinants harbored by pathogenic Escherichia coli is important for establishing the pathotype responsible for infection. A sensitive and specific miniaturized virulence microarray containing 60 oligonucleotide probes was developed. It detected six E. coli pathotypes and will be suitable in the future for high-throughput use. 相似文献