首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
Development of the ascospores of Sporopachydermia lactativora and S. cereana was studied in ultrathin sections. The spores have a very thick wall consisting of a thin dark outer layer and a double light inner layer the outer part of which is very wide and often irregular. During germination, this part disappears, the outer dark layer breaks up and the inner part of the light layer remains around the protoplast during development to a vegetative cell.This investigation was supported by the Netherlands Organization for the Advancement of Pure Research (Z.W.O.).  相似文献   

2.
Hyphae and ascospores of Eremascus fertilis and E. albus were studied in ultrathin sections. The lateral wall of the hyphae had a thick electron-light inner layer and a thin dark outer layer. The septa had a simple central pore with or without a plug, and there were Woronin bodies in the vicinity. The wall of the ascospores of E. fertilis showed a thick light inner layer and a thin dark outer layer. In the wall of the spores of E. albus a dark fibrillar layer was present between the light inner layer and the dark outer layer. The spores of this species germinated with a tube the wall of which was continuous with a newly formed layer inside the spore wall.This investigation was supported by the Netherlands Organization for the Advancement of Pure Research (Z. W. O.)  相似文献   

3.
Sporulation inSchwanniomyces alluvius appeared to be preceded by fusion of a mother and a daughter cell. Meiosis probably occurred in the mother cell and one or two spores were formed in the latter. A study of thin sections showed that the spore wall developed from a prospore wall. The mature spore wall consisted of a broad light inner layer and a thinner dark outer layer including warts. An equatorial ledge was present. During germination in the ascus, a new light inner layer was formed and the old layers of the spore wall partly broke up. Ascospores in a strain ofS. persoonii had a different wall structure in that the dark layer had changed into light areas separated by dark material which formed bulges at the surface.  相似文献   

4.
Ultrastructure of the ascospores of some species of the Torulaspora group   总被引:1,自引:1,他引:0  
Development and germination of the ascospores in species of the Torulaspora group of yeasts have been described. Most species had warty spores which, in sections, showed a dark outer layer consisting of the outer unit membrane of the prospore wall and a layer underneath formed at an early stage of development of the spores. In mature spores the light inner layer of the wall was delimited at the outside by a thin dark layer. The warts often contained dark material. The ascospores of two Pichia and three Debaryomyces species were studied for comparison; they differed in sections from the Torulaspora spores. The taxonomic implications of the ultrastructural observations have been discussed.  相似文献   

5.
The ultrastructural detail of spore development in Scutellospora heterogama is described. Although the main ontogenetic events are similar to those described from light microscopy, the complexity of wall layering is greater when examined at an ultrastructural level. The basic concept of a rigid spore wall enclosing two inner, flexible walls still holds true, but there are additional zones within these three walls distinguishable using electron microscopy, including an inner layer that is involved in the formation of the germination shield. The spore wall has three layers rather than the two reported previously. An outer, thin ornamented layer and an inner, thicker layer are both derived from the hyphal wall and present at all stages of development. These layers differentiate into the outer spore layer visible at the light microscope level. A third inner layer unique to the spore develops during spore swelling and rapidly expands before contracting back to form the second wall layer visible by light microscopy. The two inner flexible walls also are more complex than light microscopy suggests. The close association with the inner flexible walls with germination shield formation consolidates the preferred use of the term ‘germinal walls’ for these structures. A thin electron-dense layer separates the two germinal walls and is the region in which the germination shield forms. The inner germinal wall develops at least two sub-layers, one of which has an appearance similar to that of the expanding layer of the outer spore wall. An electron-dense layer is formed on the inner surface of the inner germinal wall as the germination shield develops, and this forms the wall surrounding the germination shield as well as the germination tube. At maturity, the outer germinal wall develops a thin, striate layer within its substructure.  相似文献   

6.
Use of light, transmission, and scanning electronmicroscopes revealed that the epidermal cell wall ofthe red algal agarophytes Gracilaria tikvahiaeMcLachlan and G. cornea J. Agardh consists of adecklamelle and outer and inner wall layers. The twospecies differed, with G. cornea having asignificantly thicker outer wall and a more diffusedecklamelle. After induction, the zooids of Ulvalactuca would attach to glass slides and the twospecies of Gracilaria via an adhesion pad. Within a few days, 3–5 celled germlings penetrated thedecklamelle and outer wall layer of both basiphytes. By the time the epiphyte germlings reached the 15celled stage, they had penetrated the inner walllayer. The differences in epidermal cell wallconstruction between the two basiphytes may play arole in the ability of zooids of U. lactuca toattach in nature where epiphytization of G.cornea is infrequent.  相似文献   

7.
Among 12 strains ofChlorella ellipsoidea, C. vulgaris, andC. saccharophila tested, 4 strains (1,C. ellpsoidea; 2,C. vulgaris; 1,C. saccharophila) formed osmotically labile protoplasts after treatment with mixtures of polysaccharide degrading enzymes. The relationship between enzymatical digestibility and structure or composition ofChlorella cell walls were studied by electron microscopy and staining techniques with some specific dyes. The cell wall structures of the 12Chlorella strains were grouped into three types: (1) with a trilaminar outer layer, (2) with a thin outer monolayer, and (3) without an outer layer. Protoplasts were formed only from the strains with a cell wall of Type 2. In the strains with a cell wall of Type 1, the outer layer protected the inner major microfibrillar layer against enzymatic digestion. The cell wall of Type 3 was totally resistant to the enzymes; the chemical composition of the cell wall would be somewhat different from that of other types.  相似文献   

8.
Germination of the sporangiospore of Piptocephalis unispora Benjamin, observed by means of light and electron microscopy, involved the formation of a new inner wall which became continous with the inner layer of the wall of the germ tube. The outer wall layer of the germ tube was continous with the original inner wall layer of the dormant spore. Preliminary details of appressorium structure were noted. Nutritional experiments indicated that sporangiospores required external sources of utilisable nitrogen and carbon compounds for maximal swelling and germ tube production. Limited development occurred when either nutrient was supplied singly. Comparison of germination of the asexual spore with that in other Mucorales, especially the Kickxellaceae, has been made, and the merosporangial status in P. unispora discussed.Non-Standard Abbreviations CH casein hydrolysate - Q spore quotient  相似文献   

9.
T. Fujino  T. Itoh 《Protoplasma》1994,180(1-2):39-48
Summary The cell wall of a green alga,Oocystis apiculata, was visualized by electron microscopy after preparation of samples by rapid-freezing and deep-etching techniques. The extracellular spaces clearly showed a random network of dense fibrils of approximately 6.4 nm in diameter. The cell wall was composed of three distinct layers: an outer layer with a smooth appearance and many protuberances on its outermost surface; a middle layer with criss-crossed cellulose microfibrils of approximately 15–17 nm in diameter; and an inner layer with many pores between anastomosing fibers of 8–10 nm in diameter. Both the outer and the inner layer seemed to be composed of amorphous material. Cross-bridges of approximately 4.2 nm in diameter were visualized between adjacent microfibrils by the same techniques. The cross-bridges were easily distinguished from cellulose microfibrils by differences in their dimensions.  相似文献   

10.
P. E. Wittich  P. Graven 《Protoplasma》1995,187(1-4):72-78
Summary In this study we document the development of the phytomelan layer in the outer epidermis of the outer integument ofGasteria verrucosa. Phytomelan has been described as a black, melanin-like substance which is chemically very inert. Using histochemical techniques we show that phytomelan development in the cell wall can be divided into three stages. The first stage is deposition of a callosic layer against the tangential wall, with simultaneous thickening of the adjacent parts of the radial walls. The second stage is the conversion of this callosic wall, which we call a tertiary wall, into a noncallosic inner and outer layer. The inner layer stains predominantly for cellulose and a little for pectin. The outer layer is of unknown composition, since it did not react with the stains that were used. In the third stage the outer tertiary layer becomes black, the phytomelan. The callosic wall deposited in the first developmental stage seems to function as a carbohydrate source and as a mould for the tertiary cell wall. The conversion of the callose in the second stage might be the result of penetration of substances which react with callose. All the components for phytomelan seem to be present in the outer layer before the conversion. Phenolics might be involved in this second conversion.Abbreviations DAP days after pollination - PAS periodic acid Schiff's reagent - PEG polyethylene glycol  相似文献   

11.
Summary The large unicellular flagellate,Gloeomonas kupfferi, has recently been used as an important tool in chlamydomonad cell biology research, especially in studies dealing with the structure and function of the endomembrane system. However, little is known about the main secretory product, the cell wall. This study presents structural, chemical and immunological information about this wall. This 850–900 nm thick matrix is highly elaborate and consists of three distinct layers: an inner stratum (325 nm thick) consisting of tightly interwoven fibers, a medial crystalline layer consisting of 22–23 nm subunits and an outer wall layer (500 nm thick) of outwardlyradiating fibrils. Rapid freeze-deep etch analysis reveals that the 35–40 nm fibers of the outer layer form a quasi-lattice of 160 nm subunits. The outer wall can be removed from whole pellets using the chelator, CDTA. The medial wall complex can be solubilized by perchlorate. SDS-gel electrophoresis reveals that the perchlorate soluble-material consists of five high molecular weight glycoproteins and five major low molecular weight glycoproteins. The electrophoretic profile is roughly similar to that ofChlamydomonas reinhardtii. Antibodies were successfully raised against the outer wall component and were shown to label the outer wall layer.  相似文献   

12.
The process of discharge papilla (DP) formation in Allomyces macrogynus was studied by light and electron microscopy. The plug of the DP was first deposited between the plasmalemma and the wall of the zoosporangium (ZS). The wall above the plug subsequently was eroded away. Deposition of a new inner wall layer in the sporangium held the plug in place and thickening of the layer formed a collar around the plug. Further deposition of material after this stage resulted in the characteristic pulley-shape. The plug material appeared homogeneous in electron micrographs but there was evidence of an outer layer. Digestion of the plug at the time of spore release was from within.Abbreviations DP discharge papilla - ZS zoosporangium  相似文献   

13.
Three types of structure of the ascospore wall were found among the haploid Saccharomyces species examined: a warty wall (S. rouxii), a smooth wall with a single electron-light inner layer (S. bailii) and a smooth wall with a double light inner layer (S. montanus, S. florentinus). The latter type also occurred in Kluyveromyces thermotolerans and K. waltii. In K. fragilis spores the wall had a single light inner layer. The taxonomic implications of these findings were discussed.  相似文献   

14.
H. J. Pluymaekers 《Protoplasma》1982,112(1-2):107-116
Summary The cell wall of root hairs ofLimnobium stoloniferum is composed of two fibrillar layers: an outer layer with a dispersed texture and an inner layer with a helicoidal texture. In stained oblique sections the helicoidal layer appears as a series of bow-shaped structures. In sections which were shadow-casted after the embedding medium was removed, the following properties of the helicoidal layer can be directly observed. (1) It is build up of superimposed lamellae. (2) Each lamella consists of parallel oriented microfibrils. (3) Going into the helicoidal layer, there is a counter-clockwise discontinuous rotation of the microfibril orientation in successive lamellae. (4) Between adjacent lamellae the average angular displacement of the microfibril orientation is about 23 degrees. The dispersed outer layer is also polylamellated, but with randomly arranged microfibrils in each lamella. Both layers are present in the lateral wall as well as in the apical wall of the root hairs. Observations indicate that in the cell wall of the tip the parallel oriented microfibrils of the outermost helicoidal lamellae become distorted towards a dispersed arrangement. The suggestion is made that the dispersed outer layer is derived from the helicoidal layer.  相似文献   

15.
The young multinucleate oogonium in Albugo is double-walled with an outer layer exhibiting a negative staining reaction for insoluble polysaccharides and an inner layer which is strongly PAS-positive. The oogonial nuclei exhibit an unusual staining behaviour with aniline blue showing an outer dark blue sheath of proteins surrounding a central hyaline nuclear core. Various histochemical localizations were performed for tracing the chronological sequence of development of the wall layers of the oospore. The first wall of the fertilized oospore was laid at the interphase of the periplasm and the ooplasm. Subsequent wall layers were formed both on the inner and outer side of the first oosporic wall. The second oosporic wall was formed just internal to the first one and exhibited faint PAS positivity. The third wall of the oospore was formed external to the first one and the PAS-negative material for this was apparently contributed by the periplasm. This wall layer at later stages acquired a ridged appearance and these ridges in a mature oospore appear as distinct “pegs”. The last wall to be formed is the innermost one and it completely surrounds the central ooplasm. This wall layer is callosic in nature.  相似文献   

16.
The mature seeds ofHampea nutricia are glabrous, ovoid, arillate and dark tan in colour. Longitudinal streaks on the seed surface correspond to the underlying integumentary vascular strands. Testa and tegmen are derived from the outer and inner integuments, respectively. The outer epidermis of the tegmen forms a palisade-like macrosclereid layer, the inner epidermis a fringe layer. The endosperm is single-layered and also fills the space between the two cotyledons. The embryo is nearly straight, gland-dotted; it has asymmetrical and folded cotyledons, and gossypol ducts. Systematic position ofHampea is discussed and its placement inMalvaceae is supported.  相似文献   

17.
侧柏小孢子囊表皮细胞的发育及其功能   总被引:1,自引:1,他引:0  
利用光镜和扫描电镜研究了侧柏[Plantycladus orientalis(L.)Franco]小孢子囊表皮细胞的发育过程。侧柏的小孢子囊产生于小孢子叶远轴面的基部,小孢子囊的表皮细胞由孢原细胞外面的小孢子叶的表皮细胞垂周分裂产生,小孢子囊发育的前期,表皮细胞的细胞核及大部分的细胞质位于外切向壁一侧,内切向壁一侧被许多大液泡所占据,形成外部的原生质区和内部的液泡区,中层细胞与表皮细胞的紧密结合有利于物质的运输与贮存;小孢子囊发育的后期,表皮细胞的细胞质和细胞核由外侧转移到内侧退化,细胞的内切向壁及径向壁均加厚,而外切向壁保持薄壁状态,同时,首次在裸子植物中发现表皮细胞内产生很多连接内切向壁与外切向壁的柱状体结构-纤维柱(fibrous styloid)。这种结构特点赋予了侧柏小孢子囊表皮细胞以新的功能-如同被子植物花药的纤维层,有助于小孢子囊的开裂。  相似文献   

18.
Cells of the yeast Saccharomycopsis capsularis fused in pairs after dissolving of part of the cross wall between them near the lateral wall. After nuclear migrations through the opening, the cross wall was closed again and the cells at both sides became asci. The wall of the ascospores developed from a prospore wall. Between the two unit membranes a very thin dark layer broadened to the dark layer of the wall and after that, the light inner layer developed. Immature spores in the strain studied had a ledge which disappeared during maturation.  相似文献   

19.
When Leuconostoc mesenteroides NCDO 523 was grown in MRS browth, electron microscopy of cells fixed in the presence of ruthenium red showed that the cell wall was covered with a thin layer of filamentous material. When MRS-grown cells were resuspended in the same medium supplemented with 3.6% sucrose, this surface coat doubled in thickness and a number of radial thickenings appeared within it. After 3 h the filamentous component of the surface coat had disappeared leaving only the radial projections. The progressive accumulation of polymer to produce a capsule visible by light microscopy was observed in only about 20% of the population. In this minority of cells, a dense globular dextran composed of fibrillar and particulate elements was always produced in the initial stages of synthesis. After 18 h, the dextran capsule was generally composed of an inner globular and outer fibrillar layer. It appeared that the outer layer was derived from the globular dextran of the capsule by a process of dispersion.  相似文献   

20.
本文主要对贵州松桃寒武系清虚洞组灰岩中酸泡获得的管状化石Mongolitubulus squamifer壳体显微及亚显微结构进行研究。研究结果显示, M. squamifer不仅内层广泛发育纵向纤维结构,具鳞片的外层外壁也发育有微弱的纵向纤维结构,可能解释了管体外壁广泛发育的纵向开裂现象。在一枚保存有圆卵形鳞片以下部位的标本中发现,鳞片排列形式是由基部密集的小瘤点状颗粒然后过渡为不规则的圆卵形鳞片,到管体中上部逐渐形成规则排列的三角形鳞片。通过测量部分已报道的M.squamifer管体宽度与鳞片宽度发现正常发育的棘刺,鳞片大小与管体宽度有一定相关性。贵州松桃的M.squamifer壳层原始结构为2层,包括致密的具鳞片的外层和具明显纵向纤维结构的内层,管体内外层之间发育空隙导致管体容易破损。一些标本近基部断口处的层间空隙容易被次生矿物充填,导致内层增厚致密纤维结构消失或产生中间填充层。该研究揭示了M.squamifer的鳞片排列特征和壳体微观结构,为解释其亲缘关系提供新的形态学证据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号