首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hypotheses for the adaptive significance of extreme female-biased sexual size dimorphism (SSD) generally assume that in dimorphic species males rarely interfere with each other. Here we provide the first multivariate examination of sexual selection because of male-male competition over access to females in a species with 'dwarf' males, the orb-weaving spider Argiope aurantia. Male A. aurantia typically try to mate opportunistically during the female's final moult when she is defenceless. We show that, contrary to previous hypotheses, the local operational sex ratio (males per female on the web) is male-biased most of the season. Both interference and scramble competition occur during opportunistic mating, the former leading to significant selection for large male body size. Male condition and leg length had no effect on mating success independent of size. We discuss these findings in the context of the evolution of extreme female-biased SSD in this clade.  相似文献   

2.
Odonata (dragonflies and damselflies) exhibit a range of sexual size dimorphism (SSD) that includes species with male-biased (males > females) or female-biased SSD (males < females) and species exhibiting nonterritorial or territorial mating strategies. Here, we use phylogenetic comparative analyses to investigate the influence of sexual selection on SSD in both suborders: dragonflies (Anisoptera) and damselflies (Zygoptera). First, we show that damselflies have male-biased SSD, and exhibit an allometric relationship between body size and SSD, that is consistent with Rensch's rule. Second, SSD of dragonflies is not different from unit, and this suborder does not exhibit Rensch's rule. Third, we test the influence of sexual selection on SSD using proxy variables of territorial mating strategy and male agility. Using generalized least squares to account for phylogenetic relationships between species, we show that male-biased SSD increases with territoriality in damselflies, but not in dragonflies. Finally, we show that nonagile territorial odonates exhibit male-biased SSD, whereas male agility is not related to SSD in nonterritorial odonates. These results suggest that sexual selection acting on male sizes influences SSD in Odonata. Taken together, our results, along with avian studies (bustards and shorebirds), suggest that male agility influences SSD, although this influence is modulated by territorial mating strategy and thus the likely advantage of being large. Other evolutionary processes, such as fecundity selection and viability selection, however, need further investigation.  相似文献   

3.
Sexual size dimorphisms (SSDs) in body size are expected to evolve when selection on female and male sizes favors different optima. Many insects show female-biased SSD that is usually explained by the strong fecundity advantage of larger females. However, in some insects, males are as large as or even larger than females. The seed bug Togo hemipterus (Scott) also exhibits a male-biased SSD in body size. Many studies that have clarified the evolutionary causes of male-biased SSD have focused only on male advantages due to male–male competition. To clarify the evolutionary causes of male-biased SSD in body size, we should examine the degree of not only the sexual selection that favors larger males but also natural selection that is acting on female fecundity. The obtained results, which showed higher mating acceptance rates to larger males, implies that females prefer larger males. No significant relationship was detected between female body size and fecundity; body size effects on female fecundity were weak or undetectable. We conclude that male-biased SSD in T. hemipterus can be accounted for by a combination of sexual selection through male–male competition and female choice favoring large males, plus weak or undetectable natural selection that favors large females due to a fecundity advantage.  相似文献   

4.
Rensch’s rule describes a pattern of allometry in sexual size dimorphism (SSD): when males are the larger sex (male-biased SSD), SSD increases with increasing body size, and when females are the larger sex (female-biased SSD), SSD decreases with increasing body size. While this expectation generally holds for taxa with male-biased or mixed SSD, examples of allometry for SSD consistent with Rensch’s rule in groups with primarily female-biased SSD are remarkably rare. Here, I show that the majority of dwarf chameleons (Bradypodion spp.) have female-biased SSD. In accordance with Rensch’s rule, the group exhibits an allometric slope of log(female size) on log(male size) less than one, although statistical significance is dependent on the phylogenetic comparative method used. In this system, this pattern is likely due to natural selection on both male and female body size, combined with fecundity selection on female body size. In addition to quantifying SSD and testing Rensch’s rule in dwarf chameleons, I discuss reasons why Rensch’s rule may only rarely apply to taxa with female-biased SSD.  相似文献   

5.
Sexual dimorphism in Odonata: age, size, and sex ratio at emergence   总被引:1,自引:0,他引:1  
Males and females of many organisms differ in important life-history and behavioral characters. Following a recent optimization analysis of sexually dimorphic life histories, we employed an odonate-like parameter set to identify patterns of life history and behavior to be expected in an odonate population. The default parameter magnitudes generated a smaller body size and shorter development time for males than for females, which resulted in a male-biased sex ratio. Whether population growth was density dependent or density independent, and whether development time was fixed or flexible had major impacts on life-history features. The model generated five general predictions for odonate systems. (1) For species with fixed development times, males and females should differ more in activity level, growth and mortality rates than for species with flexible life cycles. (2) In species with fixed development times, populations at high latitude or high altitude should be more active, emerge and reproduce at smaller size and have a more male-biased sex ratio than low latitude and low altitude populations. (3) In density-dependent populations, with density dependence mediated by activity-dependent mortality, higher predation rates should increase activity levels and reduce development time in species with flexible development times. (4) For species with flexible development times, in strongly density-dependent populations with density dependence mediated by mortality, activity levels should decrease and development times should increase at high prey abundance. (5) Males should be larger at emergence relative to females, and the sex ratio at emergence should be more female-biased in territorial than in non-territorial species. Existing empirical evidence concerning these predictions is generally sparse and equivocal; focused tests are clearly needed.  相似文献   

6.
In mammals, species with highly male-biased sexual size dimorphismtend to have high variance in male reproductive success. However,little information is available on patterns of sexual selection,variation in male and female reproductive success, and bodysize and mating success in species with female-biased size dimorphism.We used parentage data from microsatellite DNA loci to examinethese issues in the yellow-pine chipmunk (Tamias amoenus), asmall ground squirrel with female-biased sexual size dimorphism.Chipmunks were monitored over 3 years in the Kananaskis Valley,Alberta, Canada. We found evidence of high levels of multiplepaternity within litters. Variation in male and female reproductivesuccess was equal, and the opportunity for sexual selectionwas only marginally higher in males than females. Male and femalereproductive success both depended on mating success. We foundno evidence that the number of genetic mates a male had dependedon body size. Our results are consistent with a promiscuousmating system in which males and female mate with multiple partners.Low variation in male reproductive success may be a generalfeature of mammalian species in which females are larger thanmales.  相似文献   

7.
Population-level comparative analyses can link microevolutionary processes within populations to macroevolutionary patterns of diversification. We used the comparative method to study the evolution of sexual size dimorphism (SSD) among populations of side-blotched lizards ( Uta stansburiana ) . Uta stansburiana is polymorphic for different male mating and female life-history strategies in some populations, but monomorphic in others. We tested whether intrasexual selection among males, fecundity selection on females, and the presence of polymorphic strategies affected levels of SSD. We first resolved a phylogeny for 41 populations across the range of the species and documented a substantial regional structure. Our intraspecific data had significant phylogenetic signal, and correcting for phylogeny using independent contrasts had large effects on our results. Polymorphic populations had male-biased SSD and changes in male body size, levels of tail breaks, and SSD consistent with the intrasexual selection hypothesis. Monomorphic populations had changes in female size, clutch size, and SSD consistent with the fecundity selection hypothesis. Fecundity selection is a likely cause of some monomorphic populations having no SSD or female-biased SSD. Our results suggest that changes in mating strategies are associated with phenotypic diversification and multiple evolutionary forces can shape SSD.  相似文献   

8.
We analysed sexual size dimorphism (SSD) for two Mediterranean species of the “true” salamander clade possessing distinct life histories (Salamandra algira and Mertensiella caucasica) and equilibrated the morphometric approach to individual age by using skeletochronology. For species that have a short breeding season and live at high altitudes, such as Mediterranean amphibians, the fecundity advantage hypothesis predicts female-biased SSD to maximise reproductive success. Our results showed no SSD in either species; however, morphometric data indicated a male-biased dimorphism in limb (arm and leg) dimensions in both species when compared to body size. Limb dimorphisms are likely related to the particular mating system, which involves an amplexus during spermatophore transfer. Arm length appeared sexually dimorphic during ontogeny both in viviparous S. algira and oviparous M. caucasica. A review on SSD indicated monomorphy of body size as a common lineage-specific pattern among the “true” salamander clade, but also the common presence of other traits such as sexually dimorphic limb proportions.  相似文献   

9.
Sexual size dimorphism (SSD) varies widely across and within species. The differential equilibrium model of SSD explains dimorphism as the evolutionary outcome of consistent differences in natural and sexual selection between the sexes. Here, we comprehensively examine a unique cross-continental reversal in SSD in the dung fly, Sepsis punctum. Using common garden laboratory experiments, we establish that SSD is male-biased in Europe and female-biased in North America. When estimating sexual (pairing success) and fecundity selection (clutch size of female partner) on males under three operational sex ratios (OSRs), we find that the intensity of sexual selection is significantly stronger in European versus North American populations, increasing with male body size and OSR in the former only. Fecundity selection on female body size also increases strongly with egg number and weakly with egg volume, however, equally on both continents. Finally, viability selection on body size in terms of intrinsic (physiological) adult life span in the laboratory is overall nil and does not vary significantly across all seven populations. Although it is impossible to prove causality, our results confirm the differential equilibrium model of SSD in that differences in sexual selection intensity account for the reversal in SSD in European versus North American populations, presumably mediating the ongoing speciation process in S. punctum.  相似文献   

10.
Modern sexual selection theory indicates that reproductive costs rather than the operational sex ratio predict the intensity of sexual selection. We investigated sexual selection in the polygynandrous common lizard Lacerta vivipara . This species shows male aggression, causing high mating costs for females when adult sex ratios (ASR) are male-biased. We manipulated ASR in 12 experimental populations and quantified the intensity of sexual selection based on the relationship between reproductive success and body size. In sharp contrast to classical sexual selection theory predictions, positive directional sexual selection on male size was stronger and positive directional selection on female size weaker in female-biased populations than in male-biased populations. Thus, consistent with modern theory, directional sexual selection on male size was weaker in populations with higher female mating costs. This suggests that the costs of breeding, but not the operational sex ratio, correctly predicted the strength of sexual selection.  相似文献   

11.
开花时间决定了植物雌雄功能的交配机会, 最终影响繁殖成功。交配环境假说认为雌雄异熟植物开花时间的差异能引起植物表型性别的变异, 改变种群内的交配环境, 影响植物对雌雄功能的最佳性分配。为了研究开花时间对雌雄异熟植物的雌雄性别时期及表型性别的影响, 本文以毛茛科雄性先熟植物露蕊乌头(Aconitum gymnandrum)为实验材料, 记录了雄性和雌性功能期, 分析了植株开花时间、花的雌雄功能期和表型性别的关系。结果表明: 在植物同一花序内, 较晚开放的花有更长的雄性期和更短的雌性期, 性分配在时间上偏雄。雌雄功能期在时间上的相对分配随植物开花时间的变化表现出相似的趋势: 较晚开的花或较晚开花的个体, 花的雄性功能期相对于雌性功能期更长, 在时间上更偏向雄性功能。而且, 开花时间的差异影响种群内花的性比和植物个体的表型性别动态。随着开花时间由早到晚的变化, 种群内早期以雄花为主,末期以雌花为主, 种群内性别环境由偏雄向偏雌变化, 因此植株个体的平均表型性别则从偏雌转向偏雄。本文结果支持交配环境假说, 雄性先熟的露蕊乌头开花早期, 种群内花的性别比偏雄, 种群表型性别环境偏雄, 因而植物个体平均表型性别偏雌, 性别分配(即时间分配)偏向雌性功能, 而晚开花个体的平均性别偏雄, 更偏向雄性功能的分配。  相似文献   

12.
Abstract.  1. Sexual differences in body size are expected to evolve when selection on female and male sizes favours different optima.
2. Insects have typically female-biased size dimorphism that is usually explained by the strong fecundity advantage of larger size in females. However, numerous exceptions to this general pattern have led to the search for selective pressures favouring larger size in males.
3. In this study, the benefits of large size were investigated in males of four species of ichneumonine wasps, a species-rich group of parasitoids, many representatives of which exhibit male-biased size dimorphism.
4. Mating behaviour of all ichneumonine wasps are characterised by pre-copulatory struggles, in the course of which males attempt to override female reluctance to mate. A series of laboratory trials was conducted to study the determinants of male mating success.
5. A tendency was found for larger males as well as those in better condition to be more successful in achieving copulations. Size dimorphism of the species studied, mostly male-biased in hind tibia length but female-biased in body weight, indicates that sexual selection in males favours longer bodies and appendages rather than larger weight.
6. The qualitative similarity of the mating patterns suggests that sexual selection cannot completely explain the considerable among-species differences in sexual size dimorphism.
7. The present study cautions against using various size indices as equivalents for calculating sexual size dimorphism.
8. It is suggested that female reluctance in ichneumonine wasps functions as a mechanism of female mate assessment.  相似文献   

13.
Seabirds exhibit a range of sexual size dimorphism (SSD) that includes both male-biased (males>females) and female-biased SSD (males相似文献   

14.
动物体型性别二态性(Sexual size dimorphism,SSD)是存在于动物界的普遍现象,作用于某一性别体型的选择压力与作用于另一性别体型的选择压力大小或方向的不同被认为是SSD 产生的原因。伦施法则认为,在雄性体型比雌性体型大的动物类群中,SSD 随体型增大而增大,相反地,在雌性体型比雄性体型大的生物类群中随体型增大而减小。本文从动物体型性别二态性产生的原因及规律方面概述了其研究现状,以及蝙蝠性别二态性研究的进展,并提出关于蝙蝠体型性别二态性尚未解决的科学问题及未来的研究展望。  相似文献   

15.
Turtles are among the most intriguing amniotes but their communication and signaling have rarely been studied. Traditionally, they have been seen as basically just silent armored ‘walking stones’ with complex physiology but no altruism, maternal care, or aesthetic perception. Recently, however, we have witnessed a radical change in the perception of turtle behavioral and cognitive skills. In our study, we start by reviewing some recent findings pertaining to various highly developed behavioral and cognitive patterns with special emphasis on turtles. Then we focus on freshwater turtles and use data about their sexual behavior and size sexual dimorphism (SSD) to test whether conspicuous coloration of the head is in these animals related to sexual processes. We found that absence of aggressive mating behavior is statistically associated with the presence of conspicuous coloration on turtles’ heads. It also seems that while species with female-biased SSD are characterised by conspicuously colored head ornaments, in species with male-biased SSD conspicuous coloration is absent. Unlike large females, males thus seem to be under pressure to develop conspicuous coloration and engage in non-aggressive behavior using signaling to succeed in courtship. And finally, we discuss possible roles of head color patterns in turtle communication during mating.  相似文献   

16.
Sexual size dimorphism within species increases with body size in insects   总被引:3,自引:0,他引:3  
Tiit Teder  Toomas Tammaru 《Oikos》2005,108(2):321-334
Studies examining interspecific differences in sexual size dimorphism (SSD) typically assume that the degree of sexual differences in body size is invariable within species. This work was conducted to assess validity of this assumption. As a result of a systematic literature survey, datasets for 158 insect species were retrieved. Each dataset contained adult or pupal weights of males and females for two or more different subsets, typically originating from different conditions during immature development. For each species, an analysis was conducted to examine dependence of SSD on body size, the latter variable being used as a proxy of environmental quality. A considerable variation in SSD was revealed at the intraspecific level in insects. The results suggest that environmental conditions may strongly affect the degree, though not the direction of SSD within species. In most species, female size appeared to be more sensitive to environmental conditions than male size: with conditions improving, there was a larger relative increase in female than male size. As a consequence, sexual differences in size were shown to increase with increasing body size in species with female-biased SSD (females were the larger sex in more than 80% of the species examined). The results were consistent across different insect orders and ecological subdivisions. Mechanisms leading to intraspecific variation in SSD are discussed. This study underlines the need to consider intraspecific variation in SSD in comparative studies.  相似文献   

17.
When fitness returns are sex-specific, selection should favor the facultative adjustment of offspring sex ratios. Seasonal shifts in offspring sex ratios are predicted to be particularly beneficial in short-lived, sexually dimorphic species in which hatching date is linked to adult size, which is related to fitness in a sex-specific fashion. We used four time series of hatching dates and progeny sex ratios in the brown anole (Anolis sagrei), a short-lived lizard with male-biased sexual size dimorphism, to test for such a seasonal shift in progeny sex ratio. In 2 of the 4 years, we also released hatchlings to their natural environment to test for sex-specific effects of hatching date on juvenile survival and adult size. We found that the relationship between hatching date and size the following year was significantly steeper in males than in females, and previous work has shown that adult size is more strongly tied to fitness in males than in females. Based on those results and on further evidence linking hatching date and body size to sex-specific survival and reproductive success, we predicted that sex ratios should shift from male- to female-biased as the breeding season progressed. Contrary to our prediction, we detected no clear seasonal shift in progeny sex ratio. Furthermore, although juvenile survival was correlated with hatching date, this relationship did not consistently differ between the sexes. The observation that progeny sex ratios are seasonally invariant despite several apparent links to adult fitness suggests that the evolution of a seasonal sex-ratio bias is either inherently constrained or requires a stronger selective advantage with respect to juvenile survival.  相似文献   

18.
The Charadrii (shorebirds, gulls and alcids) are one of the most diverse avian groups from the point of view of sexual size dimorphism, exhibiting extremes in both male-biased and female-biased dimorphism, as well as monomorphism. In this study we use phylogenetic comparative analyses to investigate how size dimorphism has changed over evolutionary time, distinguishing between changes that have occurred in females and in males. Independent contrasts analyses show that both body mass and wing length have been more variable in males than in females. Directional analyses show that male-biased dimorphism has increased after inferred transitions towards more polygynous mating systems. There have been analogous increases in female-biased dimorphism after transitions towards more socially polyandrous mating systems. Changes in dimorphism in both directions are attributable to male body size changing more than female body size. We suggest that this might be because females are under stronger natural selection constraints related to fecundity. Taken together, our results suggest that the observed variation in dimorphism of Charadrii can be best explained by male body size responding more sensitively to variable sexual selection than female body size.  相似文献   

19.
Sexual size dimorphism is ultimately the result of independent, sex-specific selection on body size. In mammals, male-biased sexual size dimorphism is the predominant pattern, and it is usually attributed to the polygynous mating system prevalent in most mammals. This sole explanation is unsatisfying because selection acts on both sexes simultaneously, therefore any explanation of sexual size dimorphism should explain why one sex is relatively large and the other is small. Using mark-recapture techniques and DNA microsatellite loci to assign parentage, we examined sex-specific patterns of annual reproductive success and survival in the yellow-pine chipmunk (Tamias amoenus), a small mammal with female-biased sexual size dimorphism, to test the hypothesis that the dimorphism was related to sex differences in the relationship between body size and fitness. Chipmunks were monitored and body size components measured over three years in the Kananaskis Valley, Alberta, Canada. Male reproductive success was independent of body size perhaps due to trade-offs in body size associated with behavioral components of male mating success: dominance and running speed. Male survival was consistent with stabilizing selection for overall body size and body size components. The relationship between reproductive success and female body size fluctuated. In two of three years the relationship was positive, whereas in one year the relationship was negative. This may have been the result of differences in environmental conditions among years. Large females require more energy to maintain their soma than small females and may be unable to maintain lactation in the face of challenging environmental conditions. Female survival was positively related to body size, with little evidence for stabilizing selection. Sex differences in the relationship between body size and fitness (reproductive success and survival) were the result of different processes, but were ultimately consistent with female-biased sexual size dimorphism evident in this species.  相似文献   

20.
Allometry for sexual size dimorphism (SSD) is common in animals, but how different evolutionary processes interact to determine allometry remains unclear. Among related species SSD (male : female) typically increases with average body size, resulting in slopes of less than 1 when female size is regressed on male size: an allometric relationship formalized as 'Rensch's rule' . Empirical studies show that taxa with male-biased SSD are more likely to satisfy Rensch's rule and that a taxon's mean SSD is negatively correlated with allometric slope, implicating sexual selection on male size as an important mechanism promoting allometry for SSD. I use body length (and life-history) data from 628 (259) populations of seven species of anadromous Pacific salmon and trout (Oncorhynchus spp.) to show that in this genus life-history variation appears to regulate patterns of allometry both within and between species. Although all seven species have intraspecific allometric slopes of less than 1, contrary to expectation slope is unrelated to species' mean SSD, but is instead negatively correlated with two life-history variables: the species' mean marine age and variation in marine age. Second, because differences in marine age among species render SSD and body size uncorrelated, the interspecific slope is isometric. Together, these results provide an example of how evolutionary divergence in life history among related species can affect patterns of allometry for SSD across taxonomic scales.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号