首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Here we review PPARgamma function in relation to human adipogenesis, insulin sensitization, lipid metabolism, blood pressure regulation and prothrombotic state to perhaps provide justification for this nuclear receptor remaining a key therapeutic target for the continuing development of agents to treat human metabolic syndrome.  相似文献   

2.
3.
Obesity is associated with infiltration of macrophages into adipose tissue. Adipose macrophages may contribute to an elevated inflammatory status by secreting a variety of proinflammatory mediators, including tumor necrosis factor alpha and interleukin-6 (IL-6). Recent data suggest that during diet-induced obesity the phenotype of adipose-resident macrophages changes from alternatively activated macrophages toward a more classical and pro-inflammatory phenotype. Here, we explore the effect of peroxisome proliferator-activated receptor gamma activation on obesity-induced inflammation in 129SV mice fed a high fat diet for 20 weeks. High fat feeding increased bodyweight gain, adipose tissue mass, and liver triglycerides. Rosiglitazone treatment further increased adipose mass, reduced liver triglycerides, and changed adipose tissue morphology toward smaller adipocytes. Surprisingly, rosiglitazone markedly increased the number of macrophages in adipose tissue, as shown by immunohistochemical analysis and quantification of macrophage marker genes CD68 and F4/80+. In adipose tissue, markers for classically activated macrophages including IL-18 were down-regulated, whereas markers characteristic for alternatively activated macrophages (arginase 1, IL-10) were up-regulated by rosiglitazone. Importantly, conditioned media from rosiglitazone-treated alternatively activated macrophages neutralized the inhibitory effect of macrophages on 3T3-L1 adipocyte differentiation, suggesting that alternatively activated macrophages may be involved in mediating the effects of rosiglitazone on adipose tissue morphology and mass. Our results suggest that short term rosiglitazone treatment increases infiltration of alternatively activated macrophages in adipose tissue. The alternatively activated macrophages might play a role in peroxisome proliferator-activated receptor gamma-dependent expansion and remodeling of adipose tissue.  相似文献   

4.
5.
Pancreatic stellate cells (PSCs) play a key role in the development of pancreatic fibrosis, a constant feature of chronic pancreatitis and pancreatic cancer. In response to pro-fibrogenic mediators, PSCs undergo an activation process that involves proliferation, enhanced production of extracellular matrix proteins and a phenotypic transition towards myofibroblasts. Ligands of the peroxisome proliferator-activated receptor gamma (PPARgamma), such as thiazolidinediones, are potent inhibitors of stellate cell activation and fibrogenesis in pancreas and liver. The effects of PPARgamma ligands, however, are at least in part mediated through PPARgamma-independent pathways. Here, we have chosen a different approach to study regulatory functions of PPARgamma in PSCs. Using immortalised rat PSCs, we have established a model of tetracycline (tet)-regulated PPARgamma overexpression. Induction of PPARgamma expression strongly inhibited proliferation and enhanced the rate of apoptotic cell death. Furthermore, PPARgamma-overexpressing cells synthesised less collagen than controls. To monitor effects of PPARgamma on PSC gene expression, we employed Affymetrix microarray technology. Using stringent selection criteria, we identified 21 up- and 19 down-regulated genes in PPARgamma-overexpressing cells. Most of the corresponding gene products are either involved in lipid metabolism, play a role in signal transduction, or are secreted molecules that regulate cell growth and differentiation. In conclusion, our data suggest an active role of PPARgamma in the induction of a quiescent PSC phenotype. PPARgamma-regulated genes in PSCs may serve as novel targets for the development of antifibrotic therapies.  相似文献   

6.
Peroxisome proliferator-activated receptor gamma (PPAR-gamma) decreases the growth of certain cancer cells. In the present study, we found that six different human pancreatic cancer cell lines (AsPC-1, BxPC-3, Capan-2, HPAF-II, MIA PaCa-2, and PANC-1) expressed PPAR-gamma m-RNA and synthesized the protein. The endogenous and exogenous PPAR-gamma ligands 15-deoxy-d12,14-prostaglandin J(2) (15-PGJ(2)) and ciglitazone decreased cell number, cell viability, and increased floating/attached ratio, in a time- and dose-dependent fashion. 15-PGJ(2) increased intracellular nucleosome concentration after 6 h, but did not increase caspase-3 activity even after 96 h. Combined treatment with both 15-PGJ(2) and the caspase-3 inhibitor DEVD-CHO had no effect on cell viability, but the general caspase inhibitor ZVAD-FMK reduced 15-PGJ(2)-induced apoptosis. We concluded that the six human pancreatic cancer cells tested all expressed PPAR-gamma receptor, and treatment with PPAR-gamma agonists decreased cell viability and growth in a time- and dose-dependent manner. These effects were partially mediated by induction of caspase-3 independent apoptosis.  相似文献   

7.
8.
The nuclear receptor peroxisome proliferator-activated receptor gamma (PPARgamma) is essential for placental development. Here, we show that the mucin gene Muc1 is a PPARgamma target, whose expression is lost in PPARgamma null placentas. During differentiation of trophoblast stem cells, PPARgamma is strongly induced, and Muc1 expression is upregulated by the PPARgamma agonist rosiglitazone. Muc1 promoter is activated strongly and specifically by liganded PPARgamma but not PPARalpha or PPARdelta. A PPAR binding site (DR1) in the proximal Muc1 promoter acts as a basal silencer in the absence of PPARgamma, and its cooperation with a composite upstream enhancer element is both necessary and sufficient for PPARgamma-dependent induction of Muc1. In the placenta, MUC1 protein is localized exclusively to the apical surface of the labyrinthine trophoblast around maternal blood sinuses, resembling its luminal localization on secretory epithelia. Last, variably penetrant maternal blood sinus dilation in Muc1-deficient placentas suggests that Muc1 regulation by PPARgamma contributes to normal placental development but also that the essential functions of PPARgamma in the organ are mediated by other targets.  相似文献   

9.
10.
The mobilization of cholesterol from intracellular pools to the plasma membrane is a determinant that governs its availability for efflux to extracellular acceptors. NPC1 and NPC2 are proteins localized in the late endosome and control cholesterol transport from the lysosome to the plasma membrane. Here, we report that NPC1 and NPC2 gene expression is induced by oxidized LDL (OxLDL) in human macrophages. Because OxLDLs contain natural activators of peroxisome proliferator-activated receptor alpha (PPARalpha), a fatty acid-activated nuclear receptor, the regulation of NPC1 and NPC2 by PPARalpha and the consequences on cholesterol trafficking were further studied. NPC1 and NPC2 expression is induced by synthetic PPARalpha ligands in human macrophages. Furthermore, PPARalpha activation leads to an enrichment of cholesterol in the plasma membrane. By contrast, incubation with progesterone, which blocks postlysosomal cholesterol trafficking, as well as NPC1 and NPC2 mRNA depletion using small interfering RNA, abolished ABCA1-dependent cholesterol efflux induced by PPARalpha activators. These observations identify a novel regulatory role for PPARalpha in the control of cholesterol availability for efflux that, associated with its ability to inhibit cholesterol esterification and to stimulate ABCA1 and scavenger receptor class B type I expression, may contribute to the stimulation of reverse cholesterol transport.  相似文献   

11.
12.
13.
Cellular proliferation and migration are fundamental processes that contribute to the injury response in major blood vessels. The resultant pathologies are atherosclerosis and restenosis. As we begin to understand the cellular changes associated with vascular injury, it is critical to determine whether the inhibition of growth and movement of cells in the vasculature could serve as a novel therapeutic strategy to prevent atherosclerosis and restenosis.  相似文献   

14.
Peroxisome proliferator-activated receptor gamma (PPARgamma) causes epithelial to mesenchymal transformation (EMT) in intestinal epithelial cells, as evidenced by reorganization of the actin cytoskeleton, acquisition of a polarized, mesenchymal cellular morphology, increased cellular motility, and colony scattering. This response is due to activation of Cdc42, resulting in p21-activated kinase-dependent phosphorylation and activation of MEK1 Ser(298) and activation of ERK1/2. Dominant negative MEK1, MEK2, and ERK2 block PPARgamma-induced EMT, whereas constitutively active MEK1 and MEK2 induce a mesenchymal phenotype similar to that evoked by PPARgamma. PPARgamma also stimulates ERK1/2 phosphorylation in the intestinal epithelium in vivo. PPARgamma induces the p110alpha subunit of phosphoinositide 3-kinase (PI3K), and inhibition of PI3K blocks PPARgamma-dependent phosphorylation of MEK1 Ser(298), activation of ERK1/2, and EMT. We conclude that PPARgamma regulates the motility of intestinal epithelial cells through a mitogen-activated protein kinase cascade that involves PI3K, Cdc42, p21-activated kinase, MEK1, and ERK1/2. Regulation of cellular motility through Rho family GTPases has not been previously reported for nuclear receptors, and elucidation of the mechanism that accounts for the role of PPARgamma in regulating motility of intestinal epithelial cells provides fundamental new insight into the function of this receptor during renewal of the intestinal epithelium.  相似文献   

15.
过氧化物酶体增殖物激活受体(peroxisome proliferator-activated receptors,PPARs)是核受体超家族中的一类配体依赖的核转录因子,其中两种重要的亚型PPARα和PPARγ在脂肪细胞分化、能量代谢和炎症过程中都发挥重要作用。研究显示,PPARα和PPARγ的配体激动剂不仅可以改善包括糖尿病、高血压和肥胖等在内的胰岛素抵抗综合征,而且还可以通过作用于血管壁从而减缓动脉粥样硬化的进程。本文将就PPARα和PPARγ及其双激动剂与动脉粥样硬化发病机制和治疗的相关研究进展进行概括介绍。  相似文献   

16.
Asthma is characterized by a predominant T(H)2 type immune response to airborne allergens. Controlling T(H)2 cell function has been proposed as therapy for this disease. We show here that ligands for the nuclear receptor peroxisome proliferator activated receptor (PPAR)gamma significantly reduced the immunological symptoms of allergic asthma in a murine model of this disease. A PPARgamma ligand, 15-deoxy-delta(12,14)-prostaglandin J(2), significantly inhibited production of the T(H)2 type cytokine IL-5 from T cells activated in vitro. More importantly, in a murine model of allergic asthma, mice treated orally with ciglitazone, a potent synthetic PPARgamma ligand, had significantly reduced lung inflammation and mucous production following induction of allergic asthma. T cells from these ciglitazone treated mice also produced less IFNgamma, IL-4, and IL-2 upon rechallenge in vitro with the model allergen. Our results suggest that ligands for PPARgamma may be effective treatments for asthmatic patients.  相似文献   

17.
Peroxisome proliferator-activated receptor gamma (PPARγ) plays an important role in the differentiation of intestinal cells and tissues. Our previous reports indicate that PPARγ is expressed at considerable levels in human colon cancer cells. This suggests that PPARγ expression may be an important factor for cell growth regulation in colon cancer. In this study, we investigated PPARγ expression in 4 human colon cancer cell lines, HT-29, LOVO, DLD-1, and Caco-2. Real-time polymerase chain reaction (PCR) and Western blot analysis revealed that the relative levels of PPARγ mRNA and protein in these cells were in the order HT-29>LOVO>Caco-2>DLD-1. We also found that PPARγ overexpression promoted cell growth inhibition in PPARγ lower-expressing cell lines (Caco-2 and DLD-1), but not in higher-expressing cells (HT-29 and LOVO). We observed a correlation between the level of PPARγ expression and the cells' sensitivity for proliferation.  相似文献   

18.
19.
Peroxisome proliferator-activated receptors (PPARs) are members of the nuclear receptor superfamily. They are divided into three subtypes (alpha, beta or delta, and gamma) and are involved in lipid and glucose homeostasis and in the control of inflammation. In this study, we analyzed the expression of PPARs in murine dendritic cells (DCs), the most potent antigen presenting cells. We find that immature as well as mature spleen-derived DCs express PPARgamma, but not PPARalpha, mRNA and protein. We also show that the PPARgamma activator rosiglitazone does not interfere with the maturation of DCs in vitro nor modifies their ability to activate naive T lymphocytes in vivo. Finally, we present evidence that PPARgamma activators down-modulate the CD40-induced secretion of interleukin-12, a potent Th1-driving factor. These data suggest a possible role for PPARgamma in the regulation of immune responses.  相似文献   

20.
Peroxisome proliferator-activated receptor gamma (PPARgamma) and its response gene, Acyl CoA synthetase 5 (ACSL5), which has an important role in fatty acid metabolism, may affect weight loss in response to caloric restriction. Therefore, we aimed to determine whether these genes were involved in the interindividual response to dietary treatment. Genotypic/phenotypic comparisons were made between selected obese women from the quintiles losing the most (diet responsive, n = 74) and the quintiles losing the least (diet-resistant, n = 67) weight in the first 6 weeks of a 900-kcal formula diet. Two common PPARgamma single nucleotide polymorphisms, Pro(12)Ala and C1431T, and eight polymorphisms across the ACSL5 gene were selected for single locus and haplotypic association analyses. The PPARgamma Pro(12)Ala single nucleotide polymorphism was associated with diet resistance (odds ratio = 3.48, 95% confidence interval = 1.41 to 8.56, p = 0.03), and the rs2419621, located in the 5'untranslated region of the ACSL5 gene, displayed the strongest association with diet response (odds ratio = 3.45, 95% confidence interval = 1.61 to 7.69, p = 0.001). Skeletal muscle ACSL5 mRNA expression was significantly lower in carriers of the wildtype compared with the variant rs2419621 allele (p = 0.03). Our results suggest a link between PPARgamma2 and ACSL5 genotype and diet responsiveness.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号