首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Multiyear and multilocation studies were conducted to investigate the within‐ and the between‐year spatial dynamics of corn rootworms Diabrotica spp. (Coleoptera: Chrysomelidae), adults and their spatial associations with environmental factors in cornfields. Grid‐based spatial sampling was conducted by trapping adults emerging from the soil (i.e., ‘emergence‐trap counts’) and by counting the number of adults in the ear zone of corn plant (i.e., ‘ear‐zone count’). Spatial analysis with distance indices (SADIE) was used to determine spatial distribution patterns and to investigate spatial associations. Ear‐zone counts and emergence‐trap counts were spatially dynamic within a year and more frequently aggregated in the middle of growing seasons and random early and late in the season. However, during the peak population periods, spatial distribution of ear‐zone counts and emergence‐trap counts were significantly consistent between years, indicating predictability of future spatial distributions. Spatial distribution of emergence‐trap counts and ear‐zone counts were positively associated with soil moisture and presence of corn plants with silks, respectively. This study demonstrated that within‐year spatial distribution patterns were dynamic and that there was between‐year spatial consistency of corn rootworm adult distributions. Such information can be used to improve preventative management of corn rootworms.  相似文献   

2.
Corn rootworm, Diabrotica spp., larvae represent a significant and widespread economic threat to corn, Zea mays (L.), production in the United States, where control costs and yield losses associated with these insect pests exceed $1 billion annually. Preventing root injury and associated yield loss caused by corn rootworm larvae may be accomplished by the independent use of planting time soil insecticides or transgenic Bt hybrids. However, recent reports of both confirmed and suspected Bt resistance in corn rootworm populations throughout the Corn Belt have led to significant interest in the use of these two management tactics simultaneously. Although this approach has been investigated to some extent previously, information is lacking on how the use of a soil insecticide in tandem with a Bt seed blend—Bt and refuge (non‐Bt) seed mixed into a single product—may affect root protection and yield. We describe an experiment including six trial sites conducted over a three‐year period where various seed blends and soil insecticide/seed blend combinations were evaluated. The predominant species contributing to root injury across all sites was the western corn rootworm (Diabrotica virgifera virgifera LeConte). A weighted technique is presented for evaluating root injury for seed blends that offers a reliable estimate of product performance. The addition of a soil insecticide to the seed blend treatments never resulted in significantly improved root protection and failed to provide a consistent yield benefit. Our results suggest that a soil insecticide/seed blend combination approach is not warranted. Additionally, a subanalysis performed on individual refuge and nearby Bt root systems for seed blend treatments provides insight into the spatial characteristics of root injury in seed blend scenarios.  相似文献   

3.
The western corn rootworm, Diabrotica virgifera virgifera LeConte, is an important pest of corn, Zea mays L., causing yield losses from root damage, plant lodging, and silk feeding. Because little is known about its impact on sweet corn, we conducted research to evaluate the combined effects of insecticide, planting date, and cultivar on root damage, plant lodging, and yield in central New York sweet corn. We also examined the influence of planting date and cultivar on the emergence of adult western corn rootworms. The research was conducted in 1994 and again in 1995 by using a split-split plot experimental design with insecticide as main plot, planting date as subplot, and cultivar as sub-subplot. The effect of cultivar on beetle emergence was not significant. Root damage was not correlated with adult emergence in 1994 but was positively correlated in 1995. In 1994, there was no interaction of the main factors, and all factors had a significant impact on root damage. In 1995 there was an interaction of insecticide and planting date, and of cultivar and planting date. Generally, root damage was reduced by insecticide and later planting. Plant lodging was affected by the interaction of insecticide and planting date, and the interaction of cultivar and planting date, for both years of the study. As with root damage, lodging was reduced with insecticide treatment and later planting but also was dependent on cultivar. In 1994 and especially in 1995, silk clipping by adult western corn rootworms precluded much inference about how yield was influenced by larval feeding damage on roots. The number of emerging western corn rootworm adults was lower and later in later plantings.  相似文献   

4.
5.
The western corn rootworm, Diabrotica virgifera virgifera LeConte, is considered one of the most significant insect pests of maize in North America. Larvae of other secondary subterranean pests such as grape colaspis, Colaspis brunnea (F.), and Japanese beetle, Popillia japonica Newman, can also injure maize seedlings and cause yield loss. In the past decade, maize hybrids containing Bt proteins have been used to manage the western corn rootworm; additionally, seeds are commonly treated with a neonicotinoid and fungicide combination to control secondary pests. Recently, soil‐applied insecticides have been used in conjunction with rootworm Bt hybrids (and seed‐applied insecticides) in areas with perceived risk for increased rootworm larval or secondary pest damage. We conducted a series of trials from 2009 to 2011 that examined multiple rootworm Bt hybrids and their near‐isolines, along with two soil‐applied insecticides, to determine whether the Bt plus insecticide combination resulted in an increased level of efficacy or yield. We also sampled for Japanese beetle and grape colaspis larvae to determine their potential for reducing yield. Densities of secondary pests in our trials were low and likely had no effect on maize yield. The addition of a soil‐applied insecticide to rootworm Bt hybrids improved efficacy only once across 17 location‐years, when overall corn rootworm injury was highest; an improvement in yield was never observed. Our results suggest that the use of a soil‐applied insecticide with a rootworm Bt hybrid should only be considered in scenarios with potentially significant rootworm larval populations. However, potential negative consequences related to trait durability when soil insecticides are used with rootworm Bt maize should be considered.  相似文献   

6.
Abstract: In the hopes of lessening the current reliance on soil insecticides, developing a viable alternative for transgenic maize hybrids, and providing sustainable options for Europe, researchers recently have been developing novel maize lines that exhibit resistance and/or tolerance to corn rootworm larvae. Here we report the results of a 2‐year field experiment in a northern growing region assessing the resistance and tolerance of 10 experimental synthetic maize populations selected for varying levels of damage from western corn rootworm larvae, Diabrotica virgifera virgifera LeConte (Col.: Chrysomelidae) and four maize hybrids. Maize non‐preference, antibiosis and tolerance to rootworms was evaluated using previously established methods, including: the Iowa 1–6 root damage rating scale, root fresh weight, compensatory root growth ratings and adult rootworm emergence. Among the experimental synthetic maize populations, BS29‐11‐01 was the most susceptible, and had a mean root damage rating that was greater than the highly susceptible maize hybrid B37 × H84. This line also had the lowest mean root fresh weight and one of the lowest mean compensatory root growth ratings. In contrast, CRW8‐3 appeared to be tolerant to western corn rootworms, and had the lowest mean root damage rating, which was comparable with that of the non‐transgenic hybrid DeKalb® 46‐26.  相似文献   

7.
The first transgenic corn hybrids expressing the Bacillus thuringiensis (Bt) Cry3Bb1 protein to control corn rootworm (Diabrotica spp.) larvae were registered for commercial use in 2003. This study was conducted to investigate the effect of Cry3Bb1 protein in combination with a cucurbitacin bait on adult feeding and longevity of both organophosphate-resistant and -susceptible western corn rootworms, Diabrotica virgifera virgifera LeConte (Coleoptera: Chrysomelidae). In choice and no-choice tests, possible repellency to the Bt protein was quantified by comparing beetle consumption of cellulose disks treated with three concentrations of Bt in combination with a feeding stimulant (Invite EC) to disks treated with stimulant alone. A lethal-time assay also was conducted to examine survival of beetles exposed to Bt protein in their diet. Results from these assays indicate that adult rootworms are not significantly deterred by the presence of Cry3Bb1 on the treated discs and that ingestion of toxin does not adversely affect adult longevity.  相似文献   

8.
The success of the current resistance management plan for transgenic maize, Zea mays L. (Poaceae), targeting the rootworm complex hinges upon high rates of mating between resistant and susceptible beetles. However, differences in the fitness of adult beetles could result in assortative mating, which could, in turn, change the rate of resistance evolution. Adult head capsule widths of naturally occurring populations of western corn rootworm, Diabrotica virgifera virgifera LeConte (Coleoptera: Chrysomelidae), were examined in a variety of refuge configurations. Beetles were classified into treatments based on the hybrid – non‐Bt refuge or Bt maize targeting larval rootworms (hereafter BtRW maize) – and location – proximity to other Bt‐RW or refuge plants – of the natal host plant. Treatments included the following: a refuge plant surrounded by other refuge plants, a refuge plant located near a BtRW plant, a BtRW plant surrounded by BtRW plants, and a BtRW plant located near a refuge plant. The mean head capsule width of males emerging from BtRW plants was significantly smaller than the mean head capsule width of males emerging from refuge plants. These results indicate that males emerging from BtRW maize plants may be exposed to sublethal doses of the Bt toxin as larvae. No differences were detected between females emerging from refuge plants compared with Bt‐RW plants. Overall mean head capsule width decreased as the season progressed, regardless of treatment. The diminished head capsule width of western corn rootworm males emerging from Bt‐RW maize may act to enhance resistance management, particularly in a seed mix refuge system.  相似文献   

9.
Susceptibility of adult populations of the western corn rootworm, Diabrotica virgifera virgifera LeConte, to several insecticides was evaluated in seven Kansas counties, including Dickinson, Ford, Finney, Pottawatomie, Republic, Riley, and Stevens, between 1996 and 2002. All populations surveyed were highly susceptible to methyl parathion with the largest difference in susceptibility of only three-fold based on 16 complete bioassays for the populations from six counties over a 5-yr period. Noticeable decreases in carbaryl susceptibility were found in populations collected from Republic County between 1997 and 2001 when the cucurbitacin-carbaryl-based bait SLAM was widely used as an areawide management approach for adult corn rootworm control. However, the lowered carbaryl susceptibility returned to previous levels 1 yr after the use of SLAM was halted in the managed (treated) cornfields. This change implies possible dispersal of insects into the relatively small managed area from surrounding untreated cornfields and / or some fitness cost associated with carbaryl resistance within the population. Relative susceptibility of western corn rootworm adults also was evaluated for seven commonly used insecticides, including bifenthrin, carbaryl, chlorpyrifos, cypermethrin, fipronil, malathion, and methyl parathion. They were tested with corn rootworm adults collected from a single cornfield. Methyl parathion and bifenthrin were highly toxic to corn rootworm adults, and cypermethrin, chlorpyrifos, carbaryl, and malathion were only slightly less toxic. Although fipronil was highly toxic to adult rootworms, its activity was much slower than that of other insecticides. Thus, bifenthrin and methyl parathion were among the most effective in killing corn rootworm adults.  相似文献   

10.
Oviposition by northern corn rootworms, Diabrotica barberi Smith and Lawrence, and western corn rootworms, Diabrotica virgifera virgifera LeConte (Coleoptera: Chrysomelidae), key pests of corn in the Great Plains of the USA, occurs in the soil during late summer. Overwintering eggs are exposed to variable soil moisture and temperatures below ?5 °C. The winter mortality of eggs in the soil is a primary factor that determines the potential for larval injury to corn the following spring. Our studies aimed to determine the comparative supercooling capacities of northern and western corn rootworm eggs and to assess egg mortality following brief exposure to extreme low temperature, ranging from ?12.0 to ?21.5 °C, under three moisture regimes. Eggs of northern corn rootworm were supercooled to a temperature as low as ?27 °C, and survived supercooling to a greater extent than did western corn rootworm eggs. Moisture treatment prior to supercooling had little effect on northern corn rootworm eggs. Western corn rootworm eggs were more resistant than northern corn rootworm eggs to the effects of desiccation followed by supercooling. The survival of northern corn rootworm eggs was better than western corn rootworms under dry conditions, followed by exposure to temperatures of ?12.0 and ?17.5 °C, but was very low at ?21.5 °C, regardless of the moisture regime. The results suggest that moisture and temperature may interact in the soil environment to determine the overwintering survival of corn rootworms. It is evident from these studies that both rootworm species experience mortality at temperatures well above the supercooling points of the eggs, but that differences exist in the effects of substrate moisture treatments on the cold‐hardiness of eggs from the two species.  相似文献   

11.
Insect resistance management (IRM) can extend the lifetime of management options, but depends on extensive knowledge of the biology of the pest species involved for an optimal plan. Recently, the Environmental Protection Agency (EPA) registered seed blends refuge for two of the transgenic Bacillus thuringiensis (Bt) corn products targeting the western corn rootworm, Diabrotica virgifera virgifera LeConte. Larval movement between Bt and isoline plants can be detrimental to resistance management for high dose Bt products because the larger larvae can be more tolerant of the Bt toxins. We assessed movement of western corn rootworm larvae among four spatial arrangements of SmartStax corn (expressing both the Cry34/35Ab1 and Cry3Bb1 proteins) and isoline plants by infesting specific plants with wild type western corn rootworm eggs. Significantly fewer western corn rootworm larvae, on average, were recovered from infested SmartStax plants than infested isoline plants, and the SmartStax plants were significantly less damaged than corresponding isoline plants. However, when two infested isoline plants surrounded a SmartStax plant, a significant number of larvae moved onto the SmartStax plant late in the season. These larvae caused significant damage both years and produced significantly more beetles than any other plant configuration in the study (including isoline plants) in the first year of the study. This plant configuration would occur rarely in a 5% seed blend refuge and may produce beetles of a susceptible genotype because much of their initial larval development was on isoline plants. Results are discussed in terms of their potential effects on resistance management.  相似文献   

12.
If registered, transgenic corn, Zea mays L., with corn rootworm resistance will offer a viable alternative to insecticides for managing Diabrotica spp. corn rootworms. Resistance management to maintain susceptibility is in the interest of growers, the Environmental Protection Agency, and industry, but little is known about many aspects of corn rootworm biology required for an effective resistance management program. The extent of larval movement by the western corn rootworm, Diabrotica virgifera virgifera LeConte, that occurs from plant-to-plant or row-to-row after initial establishment was evaluated in 1998 and 1999 in a Central Missouri cornfield. Post-establishment movement by western corn rootworm larvae was clearly documented in two of four treatment combinations in 1999 where larvae moved up to three plants down the row and across a 0.46-m row. Larvae did not significantly cross a 0.91-m row after initial host establishment in 1998 or 1999, whether or not the soil had been compacted by a tractor and planter. In the current experiment, western corn rootworm larvae moved from highly damaged, infested plants to nearby plants with little to no previous root damage. Our data do not provide significant insight into how larvae might disperse after initial establishment when all plants in an area are heavily damaged or when only moderate damage occurs on an infested plant. A similar situation might also occur if a seed mixture of transgenic and isoline plants were used and if transgenic plants with rootworm resistance are not repellent to corn rootworm larvae.  相似文献   

13.
Transgenic crops producing Bacillus thuringiensis (Bt) toxins for insect control have been successful, but their efficacy is reduced when pests evolve resistance. To delay pest resistance to Bt crops, the U.S. Environmental Protection Agency (EPA) has required refuges of host plants that do not produce Bt toxins to promote survival of susceptible pests. Such refuges are expected to be most effective if the Bt plants deliver a dose of toxin high enough to kill nearly all hybrid progeny produced by matings between resistant and susceptible pests. In 2003, the EPA first registered corn, Zea mays L., producing a Bt toxin (Cry3Bb1) that kills western corn rootworm, Diabrotica virgifera virgifera LeConte, one of the most economically important crop pests in the United States. The EPA requires minimum refuges of 20% for Cry3Bb1 corn and 5% for corn producing two Bt toxins active against corn rootworms. We conclude that the current refuge requirements are not adequate, because Bt corn hybrids active against corn rootworms do not meet the high-dose standard, and western corn rootworm has rapidly evolved resistance to Cry3Bb1 corn in the laboratory, greenhouse, and field. Accordingly, we recommend increasing the minimum refuge for Bt corn targeting corn rootworms to 50% for plants producing one toxin active against these pests and to 20% for plants producing two toxins active against these pests. Increasing the minimum refuge percentage can help to delay pest resistance, encourage integrated pest management, and promote more sustainable crop protection.  相似文献   

14.
In previous crop rotation research, adult emergence traps placed in plots planted to Cuphea PSR-23 (a selected cross of Cuphea viscosissma Jacq. and Cuphea lanceolata Ait.) caught high numbers of adult western corn rootworms, Diabrotica virgifera virgifera LeConte (Coleoptera: Chrysomelidae), suggesting that larvae may have completed development on this broadleaf plant. Because of this observation, a series of greenhouse and field experiments were conducted to test the hypothesis that Cuphea could serve as a host for larval development. Greenhouse-grown plants infested with neonates of a colonized nondiapausing strain of the beetle showed no survival of larvae on Cuphea, although larvae did survive on the positive control (corn, Zea mays L.) and negative control [sorghum, Sorghum bicolor (L.) Moench] plants. Soil samples collected 20 June, 7 July, and 29 July 2005 from field plots planted to Cuphea did not contain rootworm larvae compared with means of 1.28, 0.22, and 0.00 rootworms kg(-1) soil, respectively, for samples collected from plots planted to corn. Emergence traps captured a peak of eight beetles trap(-1) day(-1) from corn plots on 8 July compared with a peak of 0.5 beetle trap(-1) day(-1) on 4 August from Cuphea plots. Even though a few adult beetles were again captured in the emergence traps placed in the Cuphea plots, it is not thought to be the result of successful larval development on Cuphea roots. All the direct evidence reported here supports the conventional belief that rootworm larvae do not survive on broadleaf plants, including Cuphea.  相似文献   

15.
Maize, Zea mays L., is an economically important crop grown throughout the world. Corn rootworm, Diabrotica spp. (Coleoptera: Chrysomelidae), larvae constitute a significant economic threat to maize production in the United States, where yield losses and management costs associated with corn rootworm species exceed $1 billion annually. Furthermore, the introduction of the western corn rootworm, D. virgifera virgifera LeConte, into maize‐producing regions of Europe has made managing corn rootworm larval injury an international concern. Larvae injure maize plants by feeding on root tissue and are the primary target of management activities. Products commonly used to protect root systems from injury include chemical insecticides (seed or soil applied) and genetically modified maize hybrids expressing toxins derived from Bacillus thuringiensis Berliner (Bt). The confirmation of field‐evolved resistance to various Bt toxins in populations of the western corn rootworm presents a significant management challenge. We performed a meta‐analysis to provide a broad understanding of the relative efficacy of the primary products currently being used to manage corn rootworm larval injury, including insecticidal seed treatments, soil insecticides and Bt hybrids (with and without the addition of soil insecticide). Our analysis is unique in the breadth of locations and years included – we analysed 135 individual trials conducted from 2003 through 2014 at multiple sites in both Illinois and Nebraska. Panel data were produced by pairing the mean node‐injury rating for each treatment of a given trial with the mean node‐injury rating for untreated maize. Linear regression models were developed to estimate the relationship between the potential for corn rootworm larval injury and product performance. For a given level of injury potential, the parameters estimated reveal differences in the degree of root protection offered by the various product categories analysed. Implications for developing long‐term, integrated, and sustainable practices for managing this important pest of maize are discussed.  相似文献   

16.
In 2001, a self-administered questionnaire was sent to 1000 corn, Zea mays L., farmers in each of five states (Illinois, Indiana, Iowa, Minnesota, and Nebraska) to evaluate their perceptions of transgenic corn designed to control the European corn borer, Ostrinia nubilalis (Hübner), and corn rootworms, Diabrotica spp. Respondents returned 1,313 surveys (26.2%). Farmers with small acreages planted a greater portion of their corn (54.5%) with transgenic corn for control of European corn borer than farmers with large farms (39.2%). The majority (75.2%) of farmers use crop rotation to control the corn rootworm. Nine insecticides comprised 92.2% of the commercial soil insecticides used for control of corn rootworm larvae. More than one-third of the farmers in Illinois (33.5%) and Indiana (39.4%) treated first-year corn for corn rootworm, primarily due to western corn rootworm egg laying in soybean, Glycine max (L.). When asked whether they would plant transgenic corn protected against the corn rootworm, 35.0% of farmers responded they would, whereas 40.5% said they were unsure. The two greatest farmer concerns about transgenic corn were the ability to sell harvested grain (59.3%) and additional technology fees (54.8%). Respondents indicated that less farmer exposure to insecticide (69.9%) and less insecticide in the environment (68.5%) were the primary benefits of transgenic corn. Farmers who had no concerns about transgenic corn for rootworm control were more likely to purchase the product (46.8%). The most common refuge-planting options farmers favored were adjacent fields (30.9%) and split fields (29.9%). Farmers (21.1%) observed a yield increase (23.7 bu/ha [9.6 bu/acre]) when using transgenic corn for European corn borer control compared with non-transgenic corn. These data can help in understanding farmers' knowledge and concerns regarding transgenic corn. This information may be of value to guide researchers, extension specialists, and policy makers in designing insect resistance management and integrated pest management programs.  相似文献   

17.
The transgenic maize (Zea mays L.) event MON 88017 produces the Bacillus thuringiensis Berliner (Bt) toxin Cry3Bb1 to provide protection from western corn rootworm (Diabrotica virgifera virgifera LeConte) larval feeding. In response to reports of reduced performance of Cry3Bb1‐expressing maize at two locations in Illinois, we conducted a two‐year experiment at these sites to characterize suspected resistance, as well as to evaluate root injury and adult emergence. Single‐plant bioassays were performed on larvae from each population that was suspected to be resistant. Results indicate that these populations had reduced mortality on Cry3Bb1‐expressing maize relative to susceptible control populations. No evidence of cross‐resistance between Cry3Bb1 and Cry34/35Ab1 was documented for the Cry3Bb1‐resistant populations. Field studies were conducted that included treatments with commercially available rootworm Bt hybrids and their corresponding non‐Bt near‐isolines. When compared with their near‐isolines, larval root injury and adult emergence were typically reduced for hybrids expressing Cry34/35Ab1 either alone or in a pyramid. In many instances, larval root injury and adult emergence were not significantly different for hybrids expressing mCry3A or Cry3Bb1 alone when compared with their non‐Bt near‐isolines. These findings suggest that Cry34/35Ab1‐expressing Bt maize may represent a valuable option for maize growers where Cry3Bb1 resistance is either confirmed or suspected. Consistent trends in adult size (head capsule width and dry mass) for individuals recovered from emergence cages were not detected during either year of this experiment. Because of the global importance of transgenic crops for managing insect pests, these results suggest that improved decision‐making for insect resistance management is needed to ensure the durability of Bt maize.  相似文献   

18.
Maize, Zea mays L., has been transformed to express the Cry34Ab1 and Cry35Ab1 proteins from Bacillus thuringiensis strain PS149B1. These two proteins act together as a binary insecticidal protein that is effective against corn rootworm (Coleoptera: Chrysomelidae) species. The design of the resistance management plan to preserve the long-term durability of this trait largely depends on the level of rootworm mortality induced by Cry34/35Ab1 corn rootworm-protected maize (frequently referred to as "dose" in this context). Here, we report on studies that showed Cry34/35Ab1-expressing maize event 59122 caused 99.1 to 99.98% mortality of western corn rootworm, Diabrotica virgifera virgifera LeConte, larvae, after adjusting adult emergence numbers for density-dependent mortality. In two of three studies, there was a short delay in time to 50% adult emergence from 59122 maize plots compared with control plots, although emergence was completed at approximately the same time from both types of maize. These data support an expectation that alleles conferring resistance to the Cry34/35Ab1 proteins in western corn rootworm will be functionally nearly completely to completely recessive on 59122 maize and that there is unlikely to be assortative mating of Cry34/35Ab1-resistant and susceptible rootworms. When incorporated into simulation models of rootworm adaptation to transgenic maize, these findings suggest that a 20% refuge is likely to be highly effective at prolonging the durability of 59122 maize.  相似文献   

19.
Field-evolved resistance to Bt maize by western corn rootworm   总被引:2,自引:0,他引:2  

Background

Crops engineered to produce insecticidal toxins derived from the bacterium Bacillus thuringiensis (Bt) are planted on millions of hectares annually, reducing the use of conventional insecticides and suppressing pests. However, the evolution of resistance could cut short these benefits. A primary pest targeted by Bt maize in the United States is the western corn rootworm Diabrotica virgifera virgifera (Coleoptera: Chrysomelidae).

Methodology/Principal Findings

We report that fields identified by farmers as having severe rootworm feeding injury to Bt maize contained populations of western corn rootworm that displayed significantly higher survival on Cry3Bb1 maize in laboratory bioassays than did western corn rootworm from fields not associated with such feeding injury. In all cases, fields experiencing severe rootworm feeding contained Cry3Bb1 maize. Interviews with farmers indicated that Cry3Bb1 maize had been grown in those fields for at least three consecutive years. There was a significant positive correlation between the number of years Cry3Bb1 maize had been grown in a field and the survival of rootworm populations on Cry3Bb1 maize in bioassays. However, there was no significant correlation among populations for survival on Cry34/35Ab1 maize and Cry3Bb1 maize, suggesting a lack of cross resistance between these Bt toxins.

Conclusions/Significance

This is the first report of field-evolved resistance to a Bt toxin by the western corn rootworm and by any species of Coleoptera. Insufficient planting of refuges and non-recessive inheritance of resistance may have contributed to resistance. These results suggest that improvements in resistance management and a more integrated approach to the use of Bt crops may be necessary.  相似文献   

20.
Field and laboratory studies were conducted in 2000 and 2001 to determine the feasibility of mass marking western corn rootworm adults, Diabrotica virgifera virgifera LeConte, with RbCl in the field. Results showed that application of rubidium (Rb) in solution to both the soil (1 g Rb/plant) and whorl (1 g Rb/plant) of corn plants was optimal for labeling western corn rootworm adults during larval development. Development of larvae on Rb-enriched corn with this technique did not significantly influence adult dry weight or survival. Rb was also highly mobile in the plant. Application of Rb to both the soil and the whorl resulted in median Rb concentrations in the roots (5,860 ppm) that were 150-fold greater than concentrations in untreated roots (38 ppm) 5 wk after treatment. Additionally, at least 90% of the beetles that emerged during the first 3 wk were labeled above the baseline Rb concentration (5 ppm dry weight) determined from untreated beetles. Because emergence was 72% complete at this time, a significant proportion of the population had been labeled. Results from laboratory experiments showed that labeled beetles remained distinguishable from unlabeled beetles for up to 4 d postemergence. The ability to efficiently label large numbers of beetles under field conditions and for a defined period with virtually no disruption of the population provides an unparalleled opportunity to conduct mark-recapture experiments for quantifying the short-range, intrafield movement of adult corn rootworms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号